
IDL Version 5.4
September, 2000 Edition
Copyright © Research Systems, Inc.
All Rights Reserved

Building IDL
Applications



Restricted Rights Notice
The IDL® software program and the accompanying procedures, functions, and documenta-
tion described herein are sold under license agreement. Their use, duplication, and disclo-
sure are subject to the restrictions stated in the license agreement. Research Systems, Inc.,
reserves the right to make changes to this document at any time and without notice.

Limitation of Warranty
Research Systems, Inc. makes no warranties, either express or implied, as to any matter not
expressly set forth in the license agreement, including without limitation the condition of
the software, merchantability, or fitness for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages
suffered by the Licensee or any others resulting from use of the IDL software package or its
documentation.

Permission to Reproduce this Manual
If you are a licensed user of this product, Research Systems, Inc. grants you a limited, non-
transferable license to reproduce this particular document provided such copies are for your
use only and are not sold or distributed to third parties. All such copies must contain the
title page and this notice page in their entirety.

Acknowledgments
IDL® is a registered trademark of Research Systems Inc., registered in the United States Patent and Trademark Office, for
the computer program described herein. Software ≡ Vision™ is a trademark of Research Systems, Inc.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permis-
sion.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright © 1988-1998   The Board of Trustees of the University of Illinois
All rights reserved.

CDF Library
Copyright © 1999
National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1996 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.

This product contains StoneTable™, by StoneTablet Publishing. All rights to StoneTable™ and its documentation are
retained by StoneTablet Publishing, PO Box 12665, Portland OR 97212-0665. Copyright © 1992-1997 StoneTablet Publish-
ing

WASTE text engine © 1993-1996 Marco Piovanelli

Portions of this software are copyrighted by INTERSOLV, Inc., 1991-1998.

Other trademarks and registered trademarks are the property of the respective trademark holders.



Contents
Chapter 1:
Overview ................................................................................................  13
What is an IDL Application? ........................................................................................... 14
About Building Applications in IDL ............................................................................... 15

Part 1: Components of the IDL Language

Chapter 2:
Expressions and Operators .................................................................  19
Overview .......................................................................................................................... 20
IDL Operators .................................................................................................................. 21
Operator Precedence ........................................................................................................ 32
Type and Structure of Expressions .................................................................................. 34

Chapter 3:
Constants and Variables ......................................................................  39
Data Types ....................................................................................................................... 40
Building IDL Applications 3



4

Constants .......................................................................................................................... 43
Type Conversion Functions ............................................................................................. 49
Variables .......................................................................................................................... 52
System Variables ............................................................................................................. 55
Common Blocks .............................................................................................................. 56

Chapter 4:
Strings .................................................................................................... 59
Overview .......................................................................................................................... 60
String Operations ............................................................................................................. 61
Non-string and Non-scalar Arguments ............................................................................ 62
String Concatenation ....................................................................................................... 63
Using STRING to Format Data ....................................................................................... 64
Byte Arguments and Strings ............................................................................................ 65
Case Folding .................................................................................................................... 67
Whitespace ....................................................................................................................... 68
Finding the Length of a String ......................................................................................... 70
Substrings ........................................................................................................................ 71
Splitting and Joining Strings ............................................................................................ 74
Comparing Strings ........................................................................................................... 75
Learning About Regular Expressions .............................................................................. 79

Chapter 5:
Arrays ..................................................................................................... 83
Overview .......................................................................................................................... 84
Array Subscripts .............................................................................................................. 85
Array Subscript Syntax: [ ] vs. ( ) .................................................................................... 86
Subscript Examples ......................................................................................................... 87
Subscript Ranges ............................................................................................................. 90
Structure of Subarrays ..................................................................................................... 91
Using Arrays as Subscripts .............................................................................................. 92
Combining Array Subscripts with Others ........................................................................ 94
Storing Elements with Array Subscripts .......................................................................... 96

Chapter 6:
Structures .............................................................................................. 97
Overview .......................................................................................................................... 98
Contents Building IDL Applications



5

Creating and Defining Structures ..................................................................................... 99
Structure References ...................................................................................................... 102
Using HELP with Structures .......................................................................................... 104
Parameter Passing with Structures ................................................................................. 105
Arrays of Structures ....................................................................................................... 108
Structure Input/Output ................................................................................................... 110
Advanced Structure Usage ............................................................................................. 112
Automatic Structure Definition ...................................................................................... 114
Relaxed Structure Assignment ....................................................................................... 116

Chapter 7:
Pointers ................................................................................................  119
Overview ........................................................................................................................ 120
Heap Variables ............................................................................................................... 121
Creating Heap Variables ................................................................................................ 123
Saving and Restoring Heap Variables ........................................................................... 124
Pointer Heap Variables .................................................................................................. 125
IDL Pointers ................................................................................................................... 126
Operations on Pointers ................................................................................................... 129
Dangling References ...................................................................................................... 133
Heap Variable Leakage .................................................................................................. 134
Pointer Validity .............................................................................................................. 136
Freeing Pointers ............................................................................................................. 137
Pointer Examples ........................................................................................................... 138

Chapter 8:
Files and Input/Output ........................................................................  145
Overview ........................................................................................................................ 146
File I/O in IDL ............................................................................................................... 147
Unformatted Input/Output ............................................................................................. 152
Formatted Input/Output ................................................................................................. 153
Opening Files ................................................................................................................. 155
Closing Files .................................................................................................................. 156
Logical Unit Numbers (LUNs) ...................................................................................... 157
Reading and Writing Very Large Files .......................................................................... 160
Using Free Format Input/Output .................................................................................... 162
Using Explicitly Formatted Input/Output ...................................................................... 167
Building IDL Applications Contents



6

Format Codes ................................................................................................................. 172
Using Unformatted Input/Output ................................................................................... 197
Portable Unformatted Input/Output ............................................................................... 204
Associated Input/Output ................................................................................................ 209
File Manipulation Operations ........................................................................................ 214
UNIX-Specific Information ........................................................................................... 224
VMS-Specific Information ............................................................................................ 227
Windows-Specific Information ..................................................................................... 237
Macintosh-Specific Information .................................................................................... 238
Scientific Data Formats ................................................................................................. 239
Support for Standard Image File Formats ..................................................................... 240

Part 2: Basics of IDL Programming

Chapter 9:
Introduction to IDL Programming ...................................................... 243
What is an IDL Program? .............................................................................................. 244
Using the IDL Editor ..................................................................................................... 246
Creating a Simple Program ............................................................................................ 251
Compiling and Running Your Program ......................................................................... 252
Commenting Your IDL Code ........................................................................................ 255

Chapter 10:
Assignment ......................................................................................... 257
Overview of the Assignment Statement ........................................................................ 258
Assigning a Value to a Variable .................................................................................... 260
Assigning Scalars to Array Elements ............................................................................ 261
Assigning Arrays to Array Elements ............................................................................. 262
Avoid Using Range Subscripts ...................................................................................... 264
Using Associated File Variables .................................................................................... 266

Chapter 11:
Program Control ................................................................................. 267
Overview ........................................................................................................................ 268
Compound Statements ................................................................................................... 269
Conditional Statements .................................................................................................. 272
Loop Statements ............................................................................................................ 279
Jump Statements ............................................................................................................ 286
Contents Building IDL Applications



7

Chapter 12:
Procedures and Functions .................................................................  289
Overview ........................................................................................................................ 290
Defining a Procedure ..................................................................................................... 291
Calling a Procedure ........................................................................................................ 292
Defining a Function ....................................................................................................... 293
Parameters ...................................................................................................................... 296
Using Keyword Parameters ........................................................................................... 299
Keyword Inheritance ...................................................................................................... 301
Entering Procedure Definitions ...................................................................................... 306
How IDL Resolves Routines ......................................................................................... 308
Parameter Passing Mechanism ...................................................................................... 309
Calling Mechanism ........................................................................................................ 311
Setting Compilation Options ......................................................................................... 313
Advice for Library Authors ........................................................................................... 315

Part 3: Creating Applications in IDL

Chapter 13:
Creating IDL Projects .........................................................................  319
Overview ........................................................................................................................ 320
Where to Store the Files for a Project ............................................................................ 324
Creating a Project ........................................................................................................... 326
Opening, Closing, and Saving Projects .......................................................................... 328
Modifying Project Groups ............................................................................................. 329
Adding, Moving, and Removing Files ........................................................................... 332
Working with Files in a Project ..................................................................................... 335
Setting the Options for a Project .................................................................................... 341
Selecting the Build Order ............................................................................................... 344
Compiling an Application from a Project ...................................................................... 346
Building a Project .......................................................................................................... 347
Running an Application from a Project ......................................................................... 349
Exporting a Project ........................................................................................................ 350

Chapter 14:
Writing Efficient IDL Programs ..........................................................  353
Overview ........................................................................................................................ 354
Building IDL Applications Contents



8

Expression Evaluation Order ......................................................................................... 355
Avoid IF Statements ...................................................................................................... 356
Use Vector and Array Operations .................................................................................. 357
Use System Functions and Procedures .......................................................................... 359
Use Constants of the Correct Type ................................................................................ 360
Eliminate Invariant Expressions .................................................................................... 361
Virtual Memory ............................................................................................................. 362
IDL Implementation ...................................................................................................... 368
The IDL Code Profiler ................................................................................................... 369

Chapter 15:
Solutions to Common IDL Tasks ....................................................... 375
Determining Variable Scope .......................................................................................... 376
Determining if a Keyword is Set ................................................................................... 377
Determining the Number of Array Elements in an Expression or Variable .................. 378
Determining if a Variable is Defined ............................................................................. 379
Supplying Values for Missing Keywords ...................................................................... 380
Supplying Values for Missing Arguments .................................................................... 381
Determining the Size/Type of an Array ......................................................................... 382
Determining if a Variable Contains a Scalar or Array Value ........................................ 385
Calling Functions/Procedures Indirectly ....................................................................... 386
Executing Dynamically-Created IDL Code ................................................................... 387

Chapter 16:
Building Cross-Platform Applications .............................................. 389
Overview ........................................................................................................................ 390
Which Operating System is Running? ........................................................................... 391
File and Path Specifications ........................................................................................... 392
Environment Variables .................................................................................................. 395
Files and I/O .................................................................................................................. 396
Math Exceptions ............................................................................................................ 399
Operating System Access .............................................................................................. 400
Display Characteristics and Palettes .............................................................................. 401
Fonts .............................................................................................................................. 402
Printing .......................................................................................................................... 403
SAVE and RESTORE ................................................................................................... 404
Widgets .......................................................................................................................... 405
Contents Building IDL Applications



9

Using External Code ...................................................................................................... 408
IDL DataMiner Issues .................................................................................................... 409

Chapter 17:
Controlling Errors ...............................................................................  411
Overview ........................................................................................................................ 412
Default Error-Handling Mechanism .............................................................................. 413
Disappearing Variables .................................................................................................. 414
Controlling Errors Using CATCH ................................................................................. 415
Controlling Errors Using ON_ERROR ......................................................................... 419
Controlling Input/Output Errors .................................................................................... 420
Error Signaling ............................................................................................................... 422
Obtaining Traceback Information .................................................................................. 424
Error Handling ............................................................................................................... 425
Math Errors .................................................................................................................... 427

Chapter 18:
Debugging an IDL Program ...............................................................  433
Overview ........................................................................................................................ 434
Debugging Commands ................................................................................................... 435
The Variable Watch Window ........................................................................................ 444

Chapter 19:
Extending the IDL Online Help System ............................................  449
Overview ........................................................................................................................ 450
Online Help Viewers Included with IDL ....................................................................... 451
Accessing Online Help from IDL .................................................................................. 454
Alternatives to Traditional Help Systems ...................................................................... 458

Part 4: Using IDL Objects

Chapter 20:
Object Basics ......................................................................................  463
Object-Oriented Programming ....................................................................................... 464
IDL Object Overview .................................................................................................... 465
Class Structures .............................................................................................................. 467
Inheritance ...................................................................................................................... 469
Object Heap Variables ................................................................................................... 471
Building IDL Applications Contents



10
Null Objects ................................................................................................................... 473
The Object Lifecycle ..................................................................................................... 474
Operations on Objects .................................................................................................... 477
Obtaining Information about Objects ............................................................................ 479
Method Routines ............................................................................................................ 481
Method Overriding ........................................................................................................ 485
Object Examples ............................................................................................................ 488

Part 5: Creating GUIs

Chapter 21:
Using the IDL GUIBuilder ................................................................... 491
Overview ........................................................................................................................ 492
Starting the IDL GUIBuilder ......................................................................................... 494
Creating an Example Application .................................................................................. 496
IDL GUIBuilder Tools .................................................................................................. 507
Widget Operations ......................................................................................................... 520
Generating Files ............................................................................................................. 523
IDL GUIBuilder Examples ............................................................................................ 525
Widget Properties .......................................................................................................... 539
Common Widget Properties .......................................................................................... 540
Base Widget Properties .................................................................................................. 546
Button Widget Properties .............................................................................................. 557
Text Widget Properties .................................................................................................. 561
Label Widget Properties ................................................................................................ 566
Slider Widget Properties ................................................................................................ 568
Droplist Widget Properties ............................................................................................ 570
Listbox Widget Properties ............................................................................................. 572
Draw Widget Properties ................................................................................................ 575
Table Widget Properties ................................................................................................ 581

Chapter 22:
Widgets ................................................................................................ 589
Overview ........................................................................................................................ 590
Widget Types ................................................................................................................. 592
Manipulating Widgets ................................................................................................... 597
Examples of Widget Programming ............................................................................... 598
Contents Building IDL Applications



11
The Widget Application Model ..................................................................................... 599
Creating Widget Applications ........................................................................................ 602
Widget Example 1 .......................................................................................................... 605
Widget Values ................................................................................................................ 607
Widget User Values ....................................................................................................... 610
Widget Events ................................................................................................................ 611
Widget Example 2 .......................................................................................................... 617
Using Draw Widgets ...................................................................................................... 619
Creating Menus .............................................................................................................. 621
Controlling Widgets ....................................................................................................... 626
Widget Example 3 .......................................................................................................... 629
Widget Sizing ................................................................................................................. 631
Event Processing And Callbacks ................................................................................... 637
Managing Widget Application State .............................................................................. 640
Compound Widgets ....................................................................................................... 642
Tips on Creating Widget Applications .......................................................................... 644
Compound Widget Example .......................................................................................... 646

Appendix A:
VMS Floating-Point Arithmetic in IDL ...............................................  655
Overview ........................................................................................................................ 656
VAX Floating-Point Format Background ...................................................................... 657
Transition Issues ............................................................................................................ 659
A Warning About Floating-Point Conversions in IDL .................................................. 661
A Strategy for Converting VMS Programs .................................................................... 662
Using CALL_EXTERNAL ........................................................................................... 664
A Note on the VMS G Float Format .............................................................................. 666

Index ....................................................................................................  667
Building IDL Applications Contents



12
Contents Building IDL Applications



Chapter 1:

Overview
This chapter includes information about the following topics:
What is an IDL Application?  . . . . . . . . . . .  14 About Building Applications in IDL . . . . . . 15
Building IDL Applications 13



14 Chapter 1: Overview
What is an IDL Application?

We use the term “IDL Application” very broadly; any program written in the IDL
language is, in our view, an IDL application. IDL Applications range from the very
simple (a MAIN program entered at the IDL command prompt, for example) to the
very complex (large programs with full-blown graphical user interfaces, such as
ENVI). Whether you are writing a small program to analyze a single data set or a
large-scale application for commercial distribution, it is useful to understand the
programming concepts used by the IDL language.

Can I Distribute My Application?

You can freely distribute IDL source code for your IDL applications to colleagues
and others who use IDL. (If you intend to distribute your applications, it is a good
idea to avoid any code that depends on the qualities of a specific platform. See
“!VERSION” in Appendix D of the IDL Reference Guide and “Creating Widget
Applications” on page 602 for some hints on writing platform-independent code.) Of
course, IDL applications can only be run from within the IDL environment, so
anyone who wishes to run your IDL application must have access to an IDL license.

If you would like to distribute your IDL application to people who do not have access
to an IDL license, you may wish to consider a runtime IDL licensing agreement.
Runtime IDL licenses allow you to distribute a special version of IDL along with
your application. Contact your distributor or Research Systems sales representative
for information about runtime licensing.
What is an IDL Application? Building IDL Applications



Chapter 1: Overview 15
About Building Applications in IDL

IDL is a complete computing environment for the interactive analysis and
visualization of data. IDL integrates a powerful, array-oriented language with
numerous mathematical analysis and graphical display techniques. Programming in
IDL is a time-saving alternative to programming in FORTRAN or C—using IDL,
tasks which require days or weeks of programming with traditional languages can be
accomplished in hours. You can explore data interactively using IDL commands and
then create complete applications by writing IDL programs.

Advantages of IDL include:

• IDL is a complete, structured language that can be used both interactively and
to create sophisticated functions, procedures, and applications.

• Operators and functions work on entire arrays (without using loops),
simplifying interactive analysis and reducing programming time.

• Immediate compilation and execution of IDL commands provides instant
feedback and “hands-on” interaction.

• Rapid 2D plotting, multi-dimensional plotting, volume visualization, image
display, and animation allow you to observe the results of your computations
immediately.

• Many numerical and statistical analysis routines—including Numerical
Recipes routines—are provided for analysis and simulation of data.

• IDL’s flexible input/output facilities allow you to read any type of custom data
format. Support is also provided for common image standards (including
BMP, JPEG, and XWD) and scientific data formats (CDF, HDF, and
NetCDF).

• IDL widgets can be used to quickly create multi-platform graphical user
interfaces to your IDL programs.

• IDL programs run the same across all supported platforms (Unix, VMS,
Microsoft Windows, and Macintosh systems) with little or no modification.
This application portability allows you to easily support a variety of
computers.

• Existing FORTRAN and C routines can be dynamically-linked into IDL to add
specialized functionality. Alternatively, C and FORTRAN programs can call
IDL routines as a subroutine library or display “engine”.
Building IDL Applications About Building Applications in IDL



16 Chapter 1: Overview
About Building Applications in IDL Building IDL Applications



Part I: Components
of the IDL
Language





Chapter 2:

Expressions and
Operators

The following topics are covered in this chapter:
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . .  20
IDL Operators . . . . . . . . . . . . . . . . . . . . . . .  21

Operator Precedence  . . . . . . . . . . . . . . . . . . 32
Type and Structure of Expressions  . . . . . . . 34
Building IDL Applications 19



20 Chapter 2: Expressions and Operators
Overview

Variables and constants are combined into expressions using operators and functions,
and providing a result. Expressions can be combined with other expressions,
variables, and constants to yield more complex expressions. In IDL, unlike
FORTRAN or C, expressions can be scalar- or array-valued.

There are many types of operators in IDL. In addition to the usual operators —
addition, subtraction, multiplication, division, exponentiation, relations (EQ, NE, GT,
etc.), and Boolean arithmetic (AND, OR, NOT, and XOR) — other operators exist to
find minima, maxima, select scalars and subarrays from arrays (subscripting), and to
concatenate scalars and arrays to form new arrays.

Functions, which are operators in themselves, perform operations that are usually of a
more complex nature than those denoted by simple operators. Functions exist in IDL
for data smoothing, shifting, transforming, evaluation of transcendental functions,
and other operations.

Expressions can be arguments to functions or procedures. For example, the
expression SIN(A*!PI) evaluates the variable A multiplied by the value of π, then
applies the trigonometric sine function. This result can be used as an operand to form
a more complex expression or as an argument to yet another function (e.g.,
EXP(SIN(A*!PI)) evaluates esin πa).
Overview Building IDL Applications



Chapter 2: Expressions and Operators 21
IDL Operators

As described above, operators are used to combine terms and expressions. IDL
supports the following types of operators:

• Parentheses

• Square Brackets

• Mathematical Operators

• Minimum and Maximum Operators

• Matrix Multiplication

• Array Concatenation

• Boolean Operators

• Relational Operators

Parentheses

Parentheses are used to group expressions and to enclose function parameter lists.
Parentheses can be used to override the order of operator evaluation described above.
Examples:

;Parentheses enclose function argument lists.
SIN(ANG * PI/180.)

;Parentheses specify order of operator evaluation.
(A + 5)/B

The right parenthesis must always close the list begun by the left parenthesis.

Square Brackets

Square brackets are used to create arrays and to enclose array subscripts.

;Use brackets when assigning elements to an array.
ARRAY = [1, 2, 3, 4, 5]

;Brackets enclose subscripts.
ARRAY[X, Y]

Note
In versions of IDL prior to version 5.0, parentheses were used to enclose array
subscripts. While using parentheses to enclose array subscripts will continue to
Building IDL Applications IDL Operators



22 Chapter 2: Expressions and Operators
work as in previous version of IDL, we strongly suggest that you use brackets in all
new code. See “Array Subscript Syntax: [ ] vs. ( )” on page 86 for additional details.

Mathematical Operators

There are seven basic IDL mathematical operators, described below.

Assignment

The equal sign (=) is the assignment operator. The value of the expression on the
right hand side of the equal sign is stored in the variable, subscript element, or range
on the left side. See Chapter 10, “Assignment” for more information. For example,
the following assigns the value 32 to A.

A = 32

Addition

The positive sign (+) is the addition operator. When applied to strings, the addition
operator concatenates the strings. For example:

;Store the sum of 3 and 6 in B.
B = 3 + 6

;Store the string value of "John Doe" in B.
B = 'John' + ' ' + 'Doe'

Subtraction and Negation

The negative sign (–) is the subtraction operator. Also, the minus sign is used as the
unary negation operator. For example:

;Store the value of 5 subtracted from 9 in C.
C = 9 - 5

;Change the sign of C.
C = -C

Multiplication

The asterisk (*) is the multiplication operator. For example:

; Store the product of 2 and 5 in variable C:
C = 2 * 5

Division

The forward slash (/) is the division operator. For example:
IDL Operators Building IDL Applications



Chapter 2: Expressions and Operators 23
; Store the result of 10.0 divided by 3.2 in variable D:
D = 10.0/3.2

Exponentiation

The caret (^) is the exponentiation operator. A^B is equal to A raised to the B power.

For real numbers, A^B is evaluated as follows:

• If A is a real number and B is of integer type, repeated multiplication is
applied.

• If both A and B are real (non-integer), the formula AB = eBlnA is evaluated.

• A0 is defined as 1.

For complex numbers, A^B is evalutated as follows. The complex number A can be
represented as A = a + ib, where a is the real part, and ib is the imaginary part. In
polar form, we can represent the complex number as A = reiθ = r cosθ  + ir sinθ,
where r cosθ  is the real part, and ir sinθ is the imaginary part:

• If A is complex and B is real, the formula AB = (reiθ)B = rB (cosBθ + isinBθ) is
evaluated.

• If A is real and B is complex, the formula AB = eBlnAis evaluated.

• If both A and B are complex, the formula AB = eBlnA is evaluated, and the
natural logarithm is computed to be ln(A) = ln(reiθ) = ln(r) + iθ.

Modulo

The keyword MOD is the modulo operator. I MOD J is equal to the remainder when
I is divided by J. The magnitude of the result is less than that of J, and its sign agrees
with that of I. For example:

;Assign the value of 9 modulo 5 (4) to A.
A = 9 MOD 5

;Compute angle modulo 2p.
A =(ANGLE + B) MOD (2 * !PI)

Minimum and Maximum Operators

The IDL minimum and maximum operators return the smaller or larger of their
operands, as described below. Note that negated values must be enclosed in
parentheses in order for IDL to interpret them correctly.
Building IDL Applications IDL Operators



24 Chapter 2: Expressions and Operators
The Minimum Operator

The “less than” sign (<) is the IDL minimum operator. The value of “A < B” is equal
to the smaller of A or B. For example:

;Set A equal to 3.
A = 5 < 3

;Set A equal to -6.
A = 5 < (-6)

;Syntax Error. IDL attempts to perform a subtraction operation if
;the "-6" is not enclosed in parentheses.
A = 5 < -6

;Set all points in array ARR that are larger than 100 to 100.
ARR = ARR < 100

;Set X to the smallest of the three operands.
X = X0 < X1 < X2

The Maximum Operator

The “greater than” sign (>) is the IDL maximum operator. “A > B” is equal to the
larger of A or B. For example:

;'>' is used to avoid taking the log of zero or negative numbers.
C = ALOG(D > 1E - 6)

;Plot positive points only. Negative points are plotted as zero.
PLOT, ARR > 0

Matrix Multiplication

IDL has two operators used to multiply arrays and matrices.

The # Operator

The # operator computes array elements by multiplying the columns of the first array
by the rows of the second array. The second array must have the same number of
columns as the first array has rows. The resulting array has the same number of
columns as the first array and the same number of rows as the second array.

Tip
If one or both of the arrays are also transposed, such as TRANSPOSE(A) # B, it is
more efficient to use the MATRIX_MULTIPLY function, which does the transpose
simultaneously with the multiplication.
IDL Operators Building IDL Applications



Chapter 2: Expressions and Operators 25
The ## Operator

The ## operator does what is commonly referred to as matrix multiplication. It
computes array elements by multiplying the rows of the first array by the columns of
the second array. The second array must have the same number of rows as the first
array has columns. The resulting array has the same number of rows as the first array
and the same number of columns as the second array.

For an example illustrating the difference between the two, see “Multiplying Arrays”
in Chapter 16 of the Using IDL manual.

Array Concatenation

The square brackets are used as array concatenation operators. Operands enclosed in
square brackets and separated by commas are concatenated to form larger arrays. The
expression [A,B] is an array formed by concatenating A and B, which can be
scalars or arrays, along the first dimension.

Similarly, [A,B,C] concatenates A, B, and C. The second and third dimensions can
be concatenated by nesting the bracket levels; [[1,2],[3,4]] is a 2-element by
2-element array with the first row containing 1 and 2 and the second row containing 3
and 4. Operands must have compatible dimensions; all dimensions must be equal
except the dimension that is to be concatenated, e.g., [2,INTARR(2,2)] are
incompatible. Examples:

;Define C as three-point vector.
C = [-1, 1, -1]

;Add 12 to the end of C.
C = [C, 12]

;Insert 12 at the beginning of C.
C = [12, C]

;Plot ARR2 appended to ARR1.
PLOT, [ARR1, ARR2]

;Define a 3x3 matrix.
KER = [[1,2,1], [2,4,2], [1,2,1]]

Note
The maximum number of operands that can appear within brackets varies across
IDL implementations but is always at least 25. If you must create an array of more
than 25 elements using the concatenation operator, use multiple statements. For
example, to create an array with 70-constant elements, use the following
statements:
Building IDL Applications IDL Operators



26 Chapter 2: Expressions and Operators
A = [k0, k1, ..., k24]
A = [A, k25, k26, ..., k49]
A = [A, k50, k51, ..., k69]

This method is relatively inefficient and should be performed only once if possible.

Boolean Operators

There are four Boolean operators in IDL. Boolean operators return either “true” or
“false” as described previously. Note that the Boolean operators do not work with
string and complex arguments.

AND

AND is a Boolean operator that returns “true” whenever both of its operands are true;
otherwise, the result is “false.” Any odd integer is considered true, and any even
integer is considered false. For integer, longword, and byte operands, a bitwise AND
operation is performed. For operations on other types, the result is equal to the second
operand if the first operand is not equal to zero or the null string; otherwise, the result
is zero or the null string.

NOT

The NOT operator is the Boolean inverse and is a unary operator (it has only one
operand). In other words, “NOT true” is equal to “false” and “NOT false” is equal to
“true.” NOT complements each bit for integer operands.

Note
Signed integers are expressed using the “2s complement” representation. This
means that to arrive at the decimal representation of a negative binary number (a
string of binary digits with a one as the most significant bit), you must take the
complement of each bit, add one, convert to decimal, and prepend a negative sign.
This means that NOT 0 equals -1, NOT 1 equals -2, etc.

For floating-point operands, the result is 1.0 if the operand is zero; otherwise, the
result is zero. The NOT operator is not valid for string or complex operands.

OR

OR is the Boolean inclusive operator. For integer or byte operands, a bitwise
inclusive OR is performed. For example, 3 OR 5 equals 7. For floating-point
IDL Operators Building IDL Applications



Chapter 2: Expressions and Operators 27
operands, the OR operator returns the first operand if it is non-zero, or the 2nd
operand otherwise.

XOR

XOR is the Boolean “exclusive or” function. XOR is only valid for byte, integer, and
longword operands. A bit in the result is set to 1 if the corresponding bits in the
operands are different; if they are equal, it is set to zero.

The following table summarizes the action of the boolean operators:

When applied to bytes, integers, and longword operands, the Boolean functions
operate on each binary bit. For example:

Results of relational expressions can be combined into more complex expressions
using the Boolean operators. Some examples of relational and Boolean expressions
are as follows:

;True if A is between 25 and 50. If A is an array, then the result
;is an array of zeros and ones.
(A LE 50) AND (A GE 25)

Operator(op) T op T  T op F F op F

AND T F F

OR T T F

XOR F T F

op T op F

NOT F T

Table 2-1: Action of Boolean Operators

Decimal Binary

3 AND 5 = 1 0011 AND 0101 = 0001

3 OR 5 = 7 0011 OR 0101 = 0111

3 XOR 5 = 6 0011 XOR 0101 = 0110

NOT 5 = -6 NOT 0101 = 1010

Table 2-2: Action of Boolean Operators on Integers
Building IDL Applications IDL Operators



28 Chapter 2: Expressions and Operators
;True if A is less than 25 or greater than 50. This is the inverse
;of the first.
(A GT 50) OR (A LT 25)

;Adds (using the logical AND operator) the hexadecimal constant FF
;(255 in decimal) to the array ARR. This masks the lower 8-bits and
;zeros the upper bits.
ARR AND 'FF'X

Relational Operators

The IDL relational operators can be used to test the relationship between two
arguments. The six relational operators are described in the following table:

Relational operators apply a relation to two operands and return a logical value of
true or false. The resulting logical value can be used as the predicate in IF, WHILE or
REPEAT statements can be combined using Boolean operators with other logical
values to make more complex expressions. For example: “1 EQ 1” is true, and
“1 GT 3” is false.

The rules for evaluating relational expressions with operands of mixed modes are the
same as those given above for arithmetic expressions. For example, in the relational
expression “2 EQ 2.0”, the integer 2 is converted to floating point and compared to
the floating point 2.0. The result of this expression is true, as represented by a byte 1.

In IDL, the value “true” is represented by the following:

• Any odd, nonzero value for byte, integer, and longword data types

Operator Description

EQ Equal to

NE Not equal to

GE Greater than or equal to

GT Greater than

LE Less than or equal to

LT Less than

Table 2-3: Relational Operators
IDL Operators Building IDL Applications



Chapter 2: Expressions and Operators 29
• Any nonzero value for single, double-precision, and the real part of a complex
number (the imaginary part is ignored)

• Any non-null string

Conversely, false is represented as anything that is not true—zero or even-valued
integers; zero-valued, floating-point quantities; and the null string.

The relational operators return a value of 1 for true and 0 for false. The type of the
result is always byte.

EQ

EQ is the relational “equal to” operator. This operator returns true if its operands are
equal; otherwise, it returns false. This operator always returns a byte value of 1 for
true and a byte value of 0 for false.

NE

NE is the “not-equal-to” relational operator. This operator returns true whenever the
operands are different. For example "sun" NE "fun" returns true.

GE

GE is the “greater than or equal to” relational operator. The GE operator returns true
if the operand on the left is greater than or equal to the one on the right. One use of
relational operators is to mask arrays as shown in the following statement:

A = ARRAY * (ARRAY GE 100)

This command sets A equal to ARRAY whenever the corresponding element of
ARRAY is greater than or equal to 100. If the element is less than 100, the
corresponding element of A is set to zero.

Strings are compared using the ASCII collating sequence: " " is less than "0" is less
than "9" is less than "A" is less than "Z" is less than "a" which is less than "z".

GT

GT is the “greater than” relational operator. This operator returns true if the operand
on the left is greater than the operand on the right. For example, “6 GT 5” returns
true.

LE

LE is the “less-than or equal-to” relational operator. This operator returns true if the
operand on the left is less than or equal to the operand on the right. For example, “4
LE 4” returns true.
Building IDL Applications IDL Operators



30 Chapter 2: Expressions and Operators
LT

LT is the “less-than” relational operator. This operator returns true if the operand on
the left is less than the operand on the right. For example, “3 LT 4” returns true.

Using Relational Operators with Arrays

Relational operators can be applied to arrays, and the resulting array of ones and
zeroes can be used as an operand. For example, the expression, ARR * (ARR LE
100) is an array equal to ARR except that all points greater than 100 have been
reduced to zero. The expression (ARR LE 100) is an array that contains a 1 where
the corresponding element of ARR is less than or equal to 100, and zero otherwise.
For example, to print the number of positive elements in the array ARR:

PRINT,TOTAL(ARR GT 0)

Using Relational Operators with Infinity and NaN Values

On Windows and Solaris x86 platforms, using relational operators with the values
infinity or NaN (Not a Number) causes an “illegal operand” error. The FINITE
function’s INFINITY and NAN keywords can be used to perform comparisons
involving infinity and NaN values. For more information, see FINITE in the IDL
Reference Guide and “Special Floating-Point Values” on page 428.

Conditional Expression

The conditional expression—written with the ternary operator ?:—has the lowest
precedence of all the operators and is used wherever any other expression is used. It
provides an alternate way to write simple constructions of the IF...THEN...ELSE
statement. In the following example, z holds the greater value, a or b. Note that if
a=b, z holds b.

IF (a GT b) THEN z = a  ELSE z = b

Using a conditional expression, this statement can be simplified. Set z to the greater
of a and b, with z=b if a=b.

z = (a GT b) ? a : b

The general form of this expression follows:

expr1 ? expr2 : expr3

The expression expr1 is evaluated first. If expr1 is true, then the expression expr2 is
evaluated and set as the value of the conditional expression. If expr1 is false, expr3 is
evaluated and set as the value of the conditional expression. Either expr2 or expr3 is
evaluated, based on the result of expr1.
IDL Operators Building IDL Applications



Chapter 2: Expressions and Operators 31
Note
Since ?: has very low precedence—just above assignment—parentheses are not
necessary around the first expression expr1. Parentheses are advisable anyway to
distinguish the condition part of the expression.

For more information about the behavior of the ?: operator, see “Definition of True
and False” on page 273.
Building IDL Applications IDL Operators



32 Chapter 2: Expressions and Operators
Operator Precedence

IDL operators are divided into the levels of algebraic precedence found in common
arithmetic. Operators with higher precedence are evaluated before those with lesser
precedence, and operators of equal precedence are evaluated from left to right.
Operators are grouped into five classes of precedence as shown in the following
table.

Priority Operator

First (highest) ( ) (parentheses, to group expressions)

Second * (pointer dereference)

^ (exponentiation)

Third * (multiplication)

# and ## (matrix multiplication)

/(division)

MOD (modulus)

Fourth + (addition)

- (subtraction and negation)

< (minimum)

> (maximum)

NOT (Boolean negation)

Fifth EQ (equality)

NE (not equal)

LE (less than or equal)

LT (less than)

GE (greater than or equal)

GT (greater than)

Table 2-4: Operator Precedence
Operator Precedence Building IDL Applications



Chapter 2: Expressions and Operators 33
The effect of operators is based on precedence, not position. This concept is shown
by the following examples.

A = 4 + 5 * 2

A is equal to 14 since the multiplication operator has a higher precedence than the
addition operator. Parentheses can be used to override the default evaluation.

A = (4 + 5) * 2

In this case, A equals 18 because the expression inside the parentheses is evaluated
first.

A useful rule of thumb is, “when in doubt, parenthesize”. Some examples of
expressions are provided in the following table.

Sixth AND (Boolean AND)

OR (Boolean OR)

XOR (Boolean exclusive OR)

Seventh ?: (conditional expression)

Expression Value

A + 1 The sum of A and 1.

A < 2 + 1 The smaller of A or two, plus one.

A < 2 * 3 The smaller of A and six, since * has
higher precedence than <.

2 * SQRT(A) Twice the square root of A.

A + 'Thursday' The concatenation of the strings A
and “Thursday.” An error results if
A is not a string

Table 2-5: Examples of Expressions

Priority Operator

Table 2-4: Operator Precedence
Building IDL Applications Operator Precedence



34 Chapter 2: Expressions and Operators
Type and Structure of Expressions

Every entity in IDL has an associated type and structure. The twelve atomic data
types in decreasing order of precedence are as follows:

• Double-precision complex floating-point

• Complex floating-point

• Double-precision floating-point

• Floating-point

• Signed and unsigned 64-bit integer

• Signed and unsigned longword (32-bit) integer

• Signed and unsigned (16-bit) integer

• Byte

• String

The structure of an expression can be either a scalar or an array. The type and
structure of an expression depends on the type and structure of its operands. Unlike
many other languages, the type and structure of most expressions in IDL cannot be
determined until the expression is evaluated. Because of this, care must be taken
when writing programs. For example, a variable can be a scalar byte variable at one
point in a program while at a later point it can be set to a complex array.

Expression Type

IDL attempts to evaluate expressions containing operands of different types in the
most accurate manner possible. The result of an operation becomes the same type as
the operand with the greatest precedence or potential precision. For example, when
adding a byte variable to a floating-point variable, the byte variable is first converted
to floating-point, then added to the floating-point variable, yielding a floating-point
result. When adding a double-precision variable to a complex variable, the result is
double precision complex because the double precision complex type has a higher
position in the hierarchy of data types.
Type and Structure of Expressions Building IDL Applications



Chapter 2: Expressions and Operators 35
Note
Signed and unsigned integers of a given width have the same precedence. In an
expression involving a combination of such types, the result is given the type of the
leftmost operand.

When writing expressions with mixed types, care must be taken to obtain the desired
results. For example, assume the variable A is an integer variable with a value of 5.
The following expressions yield the indicated results:

;Integer division is performed. The remainder is discarded.
A / 2 = 2

;The value of A is first converted to floating.
A / 2. = 2.5

;Integer division is done first because of operator precedence.
;Result is floating point.
A / 2 + 1. = 3.

;Division is done in floating, then the 1 is converted to floating
;and added.
A / 2. +1 = 3.5

;Signed and unsigned integer operands have the same precedence, so
;the left-most operand determines the type of the result as signed
;integer.
A + 5U = 10

;As above, the left-most operand determines the result type
;between types with the same precedence
5U + 1 = 10U

Note
When other types are converted to complex type, the real part of the result is
obtained from the original value and the imaginary part is set to zero.

When a string type appears as an operand with a numeric data type, the string is
converted to the type of the numeric term. For example: '123' + 123.0 is 246.0, while
'123.333' + 33 gives the result 156 because 123.333 is first converted to integer type.
In the same manner, 'ABC' + 123 also causes a conversion error.
Building IDL Applications Type and Structure of Expressions



36 Chapter 2: Expressions and Operators
Expression Structure

IDL expressions can contain operands with different structures, just as they can
contain operands with different types. Structure conversion is independent of type
conversion. An expression will yield an array result if any of its operands is an array,
as shown in the following table:

Functions exist to create arrays of the data types IDL supports: BYTARR, INTARR,
UINTARR, LONARR, ULONARR, LON64ARR, ULON64ARR, FLTARR,
DCOMPLEXARR, DBLARR, COMPLEXARR, OBJARR, PTRARR, and
STRARR. The dimensions of the desired array are the parameters to these functions.
The result of FLTARR(5) is a floating-point array with one dimension, a vector, with
five elements initialized to zero. FLTARR(50,100) is a two-dimensional array, a
matrix, with 50 columns and 100 rows.

The size of an array-valued expression is equal to the smaller of its array operands.
For example, adding a 50-point array to a 100-point array gives a 50-point array; the
last 50 points of the larger array are ignored. Array operations are performed point-
by-point, without regard to individual dimensions. An operation involving a scalar
and an array always yields an array of identical dimensions. When two arrays of
equal size (number of elements) but different structure are operands, the result is of
the same structure as the first operand. For example:

;Yields fltarr(4).
FLTARR(4) + FLTARR(1, 4)

In the above example, a row vector is added to a column vector and a row vector is
obtained because the operands are the same size. This causes the result to take the
structure of the first operand. Here are some examples of expressions involving
arrays:

;An array in which each element is equal to the same element in ARR
;plus one. The result has the same dimensions as ARR. If ARR is

Operands Result

Scalar : Scalar Scalar

Array : Array Array

Scalar : Array Array

Array : Scalar Array

Table 2-6: Structure of Expressions
Type and Structure of Expressions Building IDL Applications



Chapter 2: Expressions and Operators 37
;byte or integer, the result is of integer type; otherwise, the
;result is the same type as ARR.
ARR + 1

;An array obtained by summing two arrays.
ARR1 + ARR2

;An array in which each element is set to twice the smaller of
;either the corresponding element of ARR or 100.
(ARR < 100) * 2

;An array in which each element is equal to the exponential of the
;same element of ARR divided by 10.
EXP(ARR/10.)

;An inefficient way of coding ARR * (3./MAX(ARR))
ARR * 3./MAX(ARR)

In the last example, each point in ARR is multiplied by three, then divided by the
largest element of ARR. The MAX function returns the largest element of its array
argument. This way of writing the statement requires that each element of ARR be
operated on twice. If (3./MAX(ARR)) is evaluated with one division and the result
then multiplied by each point in ARR, the process requires approximately half the
time.
Building IDL Applications Type and Structure of Expressions



38 Chapter 2: Expressions and Operators
Type and Structure of Expressions Building IDL Applications



Chapter 3:

Constants and
Variables

The following topics are covered in this chapter:
Data Types . . . . . . . . . . . . . . . . . . . . . . . . . .  40
Constants . . . . . . . . . . . . . . . . . . . . . . . . . . .  43
Type Conversion Functions . . . . . . . . . . . . .  49

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
System Variables  . . . . . . . . . . . . . . . . . . . . . 55
Common Blocks  . . . . . . . . . . . . . . . . . . . . . 56
Building IDL Applications 39



40 Chapter 3: Constants and Variables
Data Types

The IDL language is dynamically typed. This means that an operation on a variable
can change that variable’s type. In general, when variables of different types are
combined in an expression, the result has the data type that yields the highest
precision.

For example, if an integer variable is added to a floating-point variable, the result will
be a floating-point variable.

Basic Data Types

In IDL there are twelve basic, atomic data types, each with its own form of constant.
The data type assigned to a variable is determined either by the syntax used when
creating the variable, or as a result of some operation that changes the type of the
variable.

IDL’s basic data types are discussed in more detail beginning with “Constants” on
page 43.

• Byte: An 8-bit unsigned integer ranging in value from 0 to 255. Pixels in
images are commonly represented as byte data.

• Integer: A 16-bit signed integer ranging from −32,768 to +32,767.

• Unsigned Integer: A 16-bit unsigned integer ranging from 0 to 65535.

• Long: A 32-bit signed integer ranging in value from approximately minus two
billion to plus two billion.

• Unsigned Long: A 32-bit unsigned integer ranging in value from 0 to
approximately four billion.

• 64-bit Long: A 64-bit signed integer ranging in value from –
9,223,372,036,854,775,808 to +9,223,372,036,854,775,807.

• 64-bit Unsigned Long: A 64-bit unsigned integer ranging in value from 0 to
18,446,744,073,709,551,615.

• Floating-point: A 32-bit, single-precision, floating-point number in the range
of ±1038, with approximately six or seven decimal places of significance.

• Double-precision: A 64-bit, double-precision, floating-point number in the
range of ±10308 with approximately 14 decimal places of significance.
Data Types Building IDL Applications



Chapter 3: Constants and Variables 41
• Complex: A real-imaginary pair of single-precision, floating-point numbers.
Complex numbers are useful for signal processing and frequency domain
filtering.

• Double-precision complex: A real-imaginary pair of double-precision,
floating-point numbers.

Note
In previous versions of IDL prior to version 4, the combination of a double-
precision number and a complex number in an expression resulted in a single-
precision complex number because those versions of IDL lacked the DCOMPLEX
double-precision complex data type. Starting with IDL version 4, this combination
results in a DCOMPLEX number.

• String: A sequence of characters, from 0 to 32,767 characters in length, which
is interpreted as text.

Precision of Floating-Point Numbers

The precision of IDL’s floating-point numbers depends somewhat on the platform
involved and the compiler and specific compiler switches used to compile the IDL
executable. The values shown here are minimum values; in some cases, IDL may
deliver slightly more precision than we have indicated. If your application uses
numbers that are sensitive to floating-point truncation or round-off errors, or values
that cannot be represented exactly as floating-point numbers, this is something you
should consider.

For more information on floating-point mathematics, see Chapter 16, “Mathematics”
in the Using IDL manual. For information on your machine’s precision, see
MACHAR in the IDL Reference Guide.

Complex Data Types

• Structures: Aggregations of data of various types. Structures are discussed in
Chapter 6, “Structures”.

• Pointers: A reference to a dynamically-allocated heap variable. Pointers are
discussed in Chapter 7, “Pointers”.

• Object References: A reference to a special heap variable that contains an IDL
object structure. Object references are discussed in Chapter 20, “Object
Basics”.
Building IDL Applications Data Types



42 Chapter 3: Constants and Variables
Determining the Data Type of a Variable or Array

The SIZE function can be used to determine the data type of a variable. See
“Determining the Size/Type of an Array” on page 382 for an example.
Data Types Building IDL Applications



Chapter 3: Constants and Variables 43
Constants

Integer Constants

Numeric constants of different types can be represented by a variety of forms. The
syntax used when creating integer constants is shown in the following table, where n
represents one or more digits.

Radix Type Form Examples

Decimal Byte nB 12B, 34B

Integer n or nS 12,12S,425,425S

Unsigned Integer nU or nUS 12U,12US

Long nL 12L, 94L

Unsigned Long nUL 12UL, 94UL

64-bit Long nLL 12LL, 94LL

Unsigned 64-bit
Long

nULL 12ULL, 94ULL

Hexadecimal Byte 'n'XB '2E'XB

Integer 'n'X '0F'X

Unsigned Integer 'n'XU ’0F’XU

Long ’n'XL 'FF'XL

Unsigned Long 'n'XUL ’FF’XUL

64-bit Integer 'n'XLL ’FF’XLL

Unsigned 64-bit
Integer

'n'XULL 'FF'XULL

Table 3-1: Integer Constants
Building IDL Applications Constants



44 Chapter 3: Constants and Variables
Digits in hexadecimal constants include the letters A through F for the decimal
numbers 10 through 15. Octal constant use the same style as hexadecimal constants,
substituting an O for the X. Absolute values of integer constants are given in the
following table.

Octal Byte "nB "12B

Integer "n "12

'n'O '377'O

Unsigned Integer "nU "12U

'n'OU '377'OU

Long "nL "12L

'n'OL '777777'OL

Unsigned Long "nUL "12UL

'n'OUL '777777'OUL

64-bit Long "nLL "12LL

'n'OLL '777777'OLL

Unsigned 64-bit "nULL "12ULL

Long 'n'OULL '777777'OULL

Type Absolute Value Range

Byte 0 – 255

Integer 0 – 32767

Unsigned Integer 0 – 65535

Long 0 – 231 - 1

Unsigned Long 0 – 232 - 1

64-bit Long 0 – 263 - 1

Unsigned 64-bit Long 0 – 264 - 1

Table 3-2: Absolute Value Range Of Integer Constants

Radix Type Form Examples

Table 3-1: Integer Constants
Constants Building IDL Applications



Chapter 3: Constants and Variables 45
Integers specified without one of the B, S, L, or LL specifiers are automatically
promoted to an integer type capable of holding them. For example, 40000 is
promoted to longword because it is too large to fit in an integer. Any numeric
constant can be preceded by a plus (+) or minus (-) sign. The following table
illustrates examples of both valid and invalid IDL constants.

Floating-Point and Double-Precision Constants

Floating-point and double-precision constants can be expressed in either
conventional or scientific notation. Any numeric constant that includes a decimal
point is a floating-point or double-precision constant.

Unacceptable Reason Acceptable

256B Too large, limit is 255 255B

'123L Missing apostrophe '123'L

'03G'x Invalid character "129

'27'L No radix '27'OL

650XL No apostrophes '650'XL

"129 9 is an invalid octal digit "124

Table 3-3: Examples of Integer Constants
Building IDL Applications Constants



46 Chapter 3: Constants and Variables
The syntax of floating-point and double-precision constants is shown in the following
table. The notation “sx” represents the sign and magnitude of the exponent, for
example, E-2.

Double-precision constants are entered in the same manner, replacing the E with a D.
For example, 1.0D0, 1D, and 1.D each represent a double-precision numeral 1.

Complex Constants

Complex constants contain a real and an imaginary part, both of which are single- or
double-precision floating-point numbers. The imaginary part can be omitted, in
which case it is assumed to be zero. The form of a complex constant is as follows:

COMPLEX(REAL_PART, IMAGINARY_PART)

or

COMPLEX(REAL_PART)

For example, COMPLEX(1,2) is a complex constant with a real part of one, and an
imaginary part of two. COMPLEX(1) is a complex constant with a real part of one
and a zero imaginary component. To extract the real part of a complex expression,
use the FLOAT function. The ABS function returns the magnitude of a complex
expression, and the IMAGINARY function returns the imaginary part.

String Constants

A string constant consists of zero or more characters enclosed by apostrophes (') or
quotes ("). The value of the constant is simply the characters appearing between the

Form Example

n. 102.

.n .102

n.n 10.2

nEsx 10E5

n.Esx 10.E-3

.nEsx .1E+12

n.nEsx 2.3E12

Table 3-4: Syntax of Floating-Point Constants
Constants Building IDL Applications



Chapter 3: Constants and Variables 47
leading delimiter ('or "") and the next occurrence of the same delimiter. A double
apostrophe ('') or quote ("") is considered to be the null string; a string containing
no characters. An apostrophe or quote can be represented within a string by two
apostrophes or quotes; e.g., 'Don''t' returns Don't. This syntax often can be avoided by
using a different delimiter; e.g., "Don't" instead of 'Don''t'. The following table
illustrates valid string constants.

The following table illustrates invalid string constants. In the last entry of the table,
"129" is interpreted as an illegal octal constant. This is because a quote character
followed by a digit from 0 to 7 represents an octal numeric constant, not a string, and
the character 9 is an illegal octal digit.

Expression Resulting String

'Hi there' Hi there

"Hi there" Hi there

' ' Null String

"I'm happy" I’m happy

'I"m happy' I”m happy

'counter' counter

'129' 129

Table 3-5: Examples of Valid String Constants

String Value Unacceptable Reason

Hi there 'Hi there" Mismatched delimiters

Null String ' Missing delimiter

I’m happy 'I'm happy' Apostrophe in string

counter ''counter'' Double apostrophe is null string

129 "129" Illegal octal constant

Table 3-6: Examples of Invalid String Constants
Building IDL Applications Constants



48 Chapter 3: Constants and Variables
Note
While an IDL string variable can hold up to 64 Kbytes of information, the buffer
than handles input at the IDL command prompt is limited to 255 characters. If for
some reason you need to create a string variable longer than 255 characters at the
IDL command prompt, split the variable into multiple sub-variables and combine
them with the “+” operator:

var = var1+var2+var3

This limit only affects string constants created at the IDL command prompt.

Representing Non-Printable Characters

The ASCII characters with value less than 32 or greater than 126 do not have
printable representations. Such characters can be included in string constants by
specifying their ASCII value as a byte argument to the STRING function. The
following table gives examples of using octal or hexadecimal character notation.

Note that ASCII characters may have different effects (or no effect) on platforms that
do not support ASCII terminal commands.

Specified String Actual Contents Comment

STRING(27B)+'[;H'
+STRING(27B)+[2J’

'<Esc>[;H<Esc>[2J' Erase ANSI terminal

STRING(7B) Bell Ring the bell

STRING(8B) Backspace Move cursor left

Table 3-7: Specifying Non-Printable Characters
Constants Building IDL Applications



Chapter 3: Constants and Variables 49
Type Conversion Functions

IDL allows you to convert data from one data type to another using a set of
conversion functions. These functions are useful when you need to force the
evaluation of an expression to a certain type, output data in a mode compatible with
other programs, etc. The conversion functions are in the following table:

Conversion functions operate on data of any structure: scalars, vectors, or arrays, and
variables can be of any type.

Take Care When Converting Types

If the variable you are converting lies outside the range of the type to which you are
converting, IDL will truncate the binary representation of the value without
informing you. For example:

; Define A. Note that the value of A is outside the range
; of integers, and is automatically created as a longword
; integer by IDL.
A = 33000

Function Description

STRING Convert to string

BYTE Convert to byte

FIX Convert to 16-bit integer, or optionally other type

UINT Convert to 16-bit unsigned integer

LONG Convert to 32-bit integer

ULONG Convert to 32-bit unsigned integer

LONG64 Convert to 64-bit integer

ULONG64 Convert to 64-bit unsigned integer

FLOAT Convert to floating-point

DOUBLE Convert to double-precision floating-point

COMPLEX Convert to complex value

DCOMPLEX Convert to double-precision complex value

Table 3-8: Type Conversion Functions
Building IDL Applications Type Conversion Functions



50 Chapter 3: Constants and Variables
;B is silently truncated.
B = FIX(A)
PRINT, B

IDL prints:

-32536

Applying FIX creates a short (16-bit) integer. If the value of the variable passed to
FIX lies outside the range of 16-bit integers, IDL will silently truncate the binary
value, returning only the 16 least-significant bits, with no indication that an error has
occurred.

With most floating-point operations, error conditions can be monitored using the
FINITE and CHECK_MATH functions. See Chapter 17, “Controlling Errors”, for
more information.

Converting Strings

When converting from a string argument, it is possible that the string does not contain
a valid number and no conversion is possible. The default action in such cases is to
print a warning message and return zero. The ON_IOERROR procedure can be used
to establish a statement to be jumped to in case of such errors.

Conversion between strings and byte arrays (or vice versa) is something of a special
case. The result of the BYTE function applied to a string or string array is a byte array
containing the ASCII codes of the characters of the string. Converting a byte array
with the STRING function yields a string array or scalar with one less dimension than
the byte array.

Dynamic Type Conversion

The TYPE keyword to the FIX function allows type conversion to an arbitrary type at
runtime without the use of CASE or IF statements on each type. The following
example demonstrates the use of the TYPE keyword:

PRO EXAMPLE_FIXTYPE
; Define a variable as a double:
A = 3D

; Store the type of A in a variable:
typeA = SIZE(A, /TYPE)
PRINT, 'A is type code', typeA

; Prompt the user for a numeric value:
READ, UserVal, PROMPT='Enter any Numeric Value: '
Type Conversion Functions Building IDL Applications



Chapter 3: Constants and Variables 51
; Convert the user value to the type stored in typeA:
ConvUserVal = FIX(UserVal, TYPE=typeA)

PRINT, ConvUserVal
END

Examples of Type Conversion

See the following table for examples of type conversions and their results.

Operation Results

FLOAT(1) 1.0

FIX(1.3 + 1.7) 3

FIX(1.3) + FIX(1.7) 2

FIX(1.3, TYPE=5) 1.3000000

BYTE(1.2) 1

BYTE(-1) 255b (Bytes are modulo 256)

BYTE(’01ABC’) [48b, 49b, 65b, 66b, 67b]

STRING([65B, 66B, 67B]) ’ABC’

FLOAT(COMPLEX(1, 2)) 1.0

COMPLEX([1, 2], [4, 5]) [COMPLEX(1,4),COMPLEX(2,5)]

Table 3-9: Uses of Type Conversion Functions
Building IDL Applications Type Conversion Functions



52 Chapter 3: Constants and Variables
Variables

Variables are named repositories where information is stored. A variable can have
virtually any size and can contain any of the IDL data types. Variables can be used to
store images, spectra, single quantities, names, tables, etc.

Attributes of Variables

Every variable has a number of attributes that can change during the execution of a
program or terminal session. Variables have both a structure and a type.

Structure

A variable can contain a single value (a scalar) or a number of values of the same
type (an array) or data entities of potentially differing type and size (a structure).
Strings are considered as single values, and a string array contains a number of
variable-length strings.

In addition, a variable can associate an array structure with a file; these variables are
called associated variables. Referencing an associated variable causes data to be read
from, or written to, the file. Associated variables are described in ASSOC in the IDL
Reference Guide.

Type

A variable can have one and only one of the following types: undefined, byte, integer,
unsigned integer, 32-bit longword, unsigned 32-bit longword, 64-bit integer,
unsigned 64-bit integer, floating-point, double-precision floating-point, complex
floating-point, double-precision complex floating-point, string, structure, pointer, or
object reference.

When a variable appears on the left-hand side of an assignment statement, its
attributes are copied from those of the expression on the right-hand side. For
example, the statement

ABC = DEF

redefines or initializes the variable ABC with the attributes and value of variable
DEF. Attributes previously assigned to the variable are destroyed. Initially, every
variable has the single attribute of undefined. Attempts to use the value of an
undefined variables result in an error.
Variables Building IDL Applications



Chapter 3: Constants and Variables 53
Variable Names

IDL variables are named by identifiers. Each identifier must begin with a letter and
can contain from 1 to 128 characters. The second and subsequent characters can be
letters, digits, the underscore character, or the dollar sign. A variable name cannot
contain embedded spaces, because spaces are considered to be delimiters. Characters
after the first 128 are ignored. Names are case insensitive. Lowercase letters are
converted to uppercase; so the variable name abc is equivalent to the name ABC. The
following table illustrates some acceptable and unacceptable variable names.

Warning
A variable cannot have the same name as a function (either built-in or user-defined)
or a reserved word (see the following list). Giving a variable such a name results in
a syntax error or in “hiding” the variable.

The following table lists all of the reserved words in IDL.

Unacceptable Reason Acceptable

EOF Conflicts with function name A

6A Does not start with letter A6

_INIT Does not start with letter INIT_STATE

AB@ Illegal character ABC$DEF

ab cd Embedded space My_variable

Table 3-10: Unacceptable and Acceptable IDL Variable Names

AND BEGIN BREAK

CASE COMMON COMPILE_OPT

CONTINUE DO ELSE

END ENDCASE ENDELSE

ENDFOR ENDIF ENDREP

ENDSWITCH ENDWHILE EQ

FOR FORWARD_FUNCTION FUNCTION

GE GOTO GT
Building IDL Applications Variables



54 Chapter 3: Constants and Variables
IF INHERITS LE

LT MOD NE

NOT OF ON_IOERROR

OR PRO REPEAT

SWITCH THEN UNTIL

WHILE XOR
Variables Building IDL Applications



Chapter 3: Constants and Variables 55
System Variables

System variables are a special class of predefined variables available to all program
units. Their names always begin with the exclamation mark character (!). System
variables are used to set the options for plotting, to set various internal modes, to
return error status, etc.

System variables have a predefined type and structure that cannot be changed. When
an expression is stored into a system variable, it is converted to the variable type, if
necessary and possible. Certain system variables are read only, and their values
cannot be changed. The user can define new system variables with the DEFSYSV
procedure.

System variables are discussed in Appendix D, “System Variables” in the IDL
Reference Guide.
Building IDL Applications System Variables



56 Chapter 3: Constants and Variables
Common Blocks

Common blocks are useful when there are variables that need to be accessed by
several IDL procedures or when the value of a variable within a procedure must be
preserved across calls. Once a common block has been defined, any program unit
referencing that common block can access variables in the block as though they were
local variables. Variables in a common statement have a global scope within
procedures defining the same common block. Unlike local variables, variables in
common blocks are not destroyed when a procedure is exited.

There are two types of common block statements: definition statements and reference
statements.

Common Block Definition Statements

The common block definition statement creates a common block with the designated
name and places the variables whose names follow into that block. Variables defined
in a common block can be referenced by any program unit that declares that common
block. The general form of the COMMON block definition statement is as follows:

COMMON Block_Name, Variable1, Variable2, ..., Variablen

The number of variables appearing in the common block definition statement
determines the size of the common block. The first program unit (main program,
function, or procedure) defining the common block sets the size of the common
block, which can never be expanded. Other program units can reference the common
block with any number of variables up to the number originally specified. Different
program units can give the variables different names, as shown in the example below.

Common blocks share the same space for all procedures. In IDL, common block
variables are matched variable to variable, unlike FORTRAN, where storage
locations are matched. The third variable in a given IDL common block will always
be the same as the third variable in all declarations of the common block regardless of
the size, type, or structure of the preceding variables.

Note that common blocks must appear before any of the variables they define are
referenced in the procedure.

Variables in common blocks can be of any type and can be used in the same manner
as normal variables. Variables appearing as parameters cannot be used in common
blocks. There are no restrictions on the number of common blocks used, although
each common block uses dynamic memory.
Common Blocks Building IDL Applications



Chapter 3: Constants and Variables 57
Example

The two procedures in the following example show how variables defined in
common blocks are shared.

PRO ADD, A
COMMON SHARE1, X, Y, Z, Q, R
A = X + Y + Z + Q + R
PRINT, X, Y, Z, Q, R, A
RETURN

END

PRO SUB, T
COMMON SHARE1, A, B, C, D
T = A - B - C - D
PRINT, A, B, C, D, T
RETURN

END

The variables X, Y, Z, and Q in the procedure ADD are the same as the variables A,
B, C, and D, respectively, in procedure SUB. The variable R in ADD is not used in
SUB. If the procedure SUB were to be compiled before the procedure ADD, an error
would occur when the COMMON definition in ADD was compiled. This is because
SUB has already declared the size of the common block, SHARE1, which cannot be
extended.

Common Block Reference Statements

The common block reference statement duplicates the common block and variable
names from a previous definition. The common block need only be defined in the
first routine to be compiled that references the block.

Example

The two procedures in the following example share the common block SHARE2 and
all its variables.

PRO MULT, M
COMMON SHARE2, E, F, G
M = E * F * G
PRINT, M, E, F, G
RETURN

END

PRO DIV, D
COMMON SHARE2
D = E / F
PRINT, D, E, F, G
Building IDL Applications Common Blocks



58 Chapter 3: Constants and Variables
RETURN
END

The MULT procedure uses a common block definition statement to define the block
SHARE2. The DIV procedure then uses a common block reference statement to gain
access to all the variables defined in SHARE2. (Note that MULT must be defined
before DIV in order for the common block reference to succeed.)
Common Blocks Building IDL Applications



Chapter 4:

Strings
The following topics are covered in this chapter:
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . .  60
String Operations  . . . . . . . . . . . . . . . . . . . .  61
Non-string and Non-scalar Arguments . . . .  62
String Concatenation . . . . . . . . . . . . . . . . . .  63
Using STRING to Format Data  . . . . . . . . .  64
Byte Arguments and Strings . . . . . . . . . . . .  65
Case Folding . . . . . . . . . . . . . . . . . . . . . . . .  67

Whitespace . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Finding the Length of a String . . . . . . . . . . . 70
Substrings . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Splitting and Joining Strings  . . . . . . . . . . . . 74
Comparing Strings . . . . . . . . . . . . . . . . . . . . 75
Learning About Regular Expressions  . . . . . 79
Building IDL Applications 59



60 Chapter 4: Strings
Overview

An IDL string is a sequence of characters from 0 to 32,767 characters in length.
Strings have dynamic length (they grow or shrink to fit), and there is no need to
declare the maximum length of a string prior to using it. As with any data type, string
arrays can be created to hold more than a single string. In this case, the length of each
individual string in the array depends only on its own length and is not affected by the
lengths of the other string elements.

A Note About the Examples

In some of the examples in this chapter, it is assumed that a string array named
TREES exists. TREES contains the names of seven trees, one name per element, and
is created using the statement:

trees = ['Beech', 'Birch', 'Mahogany', 'Maple', 'Oak', $
'Pine', 'Walnut']

Executing the statement,

PRINT, '>' + trees + '< '

results in the following output:

>Beech<  >Birch<  >Mahogany<  >Maple<  >Oak<  >Pine<  >Walnut<
Overview Building IDL Applications



Chapter 4: Strings 61
String Operations

IDL supports several basic string operations, as described below.

Concatenation

The Addition operator, “+”, can be used to concatenate strings together.

Formatting Data

The STRING function is used to format data into a string. The READS procedure can
be used to read values from a string into IDL variables.

Case Folding

The STRLOWCASE function returns a copy of its string argument converted to
lowercase. Similarly, the STRUPCASE function converts its argument to uppercase.

White Space Removal

The STRCOMPRESS and STRTRIM functions can be used to eliminate unwanted
white space (blanks or tabs) from their string arguments.

Length

The STRLEN function returns the length of its string argument.

Substrings

The STRPOS, STRPUT, and STRMID routines locate, insert, and extract substrings
from their string arguments.

Splitting and Joining Strings

The STRSPLIT function is used to break strings apart, and the STRJOIN function
can be used to and glue strings together.

Comparing Strings

The STRCMP, STRMATCH, and STREGEX functions perform string comparisons.
Building IDL Applications String Operations



62 Chapter 4: Strings
Non-string and Non-scalar Arguments

Most of the string processing routines described in this chapter expect at least one
argument that is the string on which they act.

If the argument is not of type string, IDL converts it to type string using the same
default formatting rules that are used by the PRINT/PRINTF or STRING routines.
The function then operates on the converted result. Thus, the IDL statement,

PRINT, STRLEN(23)

returns the result

8

because the argument “23” is first converted to the string ' 23' that happens to
be a string of length 8.

If the argument is an array instead of a scalar, the function returns an array result with
the same structure as the argument. Each element of the result corresponds to an
element of the argument. For example, the following statements:

;Get an uppercase version of TREES.
A = STRUPCASE(trees)

;Show that the result is also an array.
HELP, A

;Display the original.
PRINT, trees

;Display the result.
PRINT, A

produce the following output:

A                STRING    = Array(7)
Beech Birch Mahogany Maple Oak Pine Walnut
BEECH BIRCH MAHOGANY MAPLE OAK PINE WALNUT

For more details on how individual routines handle their arguments, see the
individual descriptions in the IDL Reference Guide.
Non-string and Non-scalar Arguments Building IDL Applications



Chapter 4: Strings 63
String Concatenation

The addition operator is used to concatenate strings. For example, the command:

A = 'This is' + ' a concatenation example.'
PRINT, A

results in the following output:

This is a concatenation example.

The following IDL statements build a scalar string containing a comma-separated list
of the names found in the TREES string array:

;Use REPLICATE to make an array with the correct number of commas
;and add it to trees.
names = trees + [REPLICATE(',', N_ELEMENTS(trees)-1), '']

;Show the resulting list.
PRINT, names

Running the above statements results in the following output:

Beech, Birch, Mahogany, Maple, Oak, Pine, Walnut
Building IDL Applications String Concatenation



64 Chapter 4: Strings
Using STRING to Format Data

The STRING function has the following form:

S = STRING(Expression1, ..., Expressionn)

It converts its parameters to characters, returning the result as a string expression. It is
identical in function to the PRINT procedure, except that its output is placed into a
string rather than being output to the terminal. As with PRINT, the FORMAT
keyword can be used to explicitly specify the desired format. See the discussions of
free format and explicitly formatted input/output (“Free Format I/O” on page 153) for
details of data formatting. For more information on the STRING function, see
STRING in the IDL Reference Guide.

As a simple example, the following IDL statements:

;Produce a string array.
A = STRING(FORMAT='("The values are:", /, (I))', INDGEN(5))

;Show its structure.
HELP, A

;Print the result.
FOR I = 0, 4 DO PRINT, A[I]

produce the following output:

A   STRING    = Array(6)
The values are:

0
1
2
3

Reading Data from Strings

The READS procedure performs formatted input from a string variable and writes
the results into one or more output variables. This procedure differs from the READ
procedure only in that the input comes from memory instead of a file.

This routine is useful when you need to examine the format of a data file before
reading the information it contains. Each line of the file can be read into a string using
READF. Then the components of that line can be read into variables using READS.

See the description of READS in the IDL Reference Guide for more details.
Using STRING to Format Data Building IDL Applications



Chapter 4: Strings 65
Byte Arguments and Strings

There is a close association between a string and a byte array—a string is simply an
array of bytes that is treated as a series of ASCII characters. Therefore, it is
convenient to be able to convert between them easily.

When STRING is called with a single argument of byte type and the FORMAT
keyword is not used, STRING does not work in its normal fashion. Instead of
formatting the byte data and placing it into a string, it returns a string containing the
byte values from the original argument. Thus, the result has one less dimension than
the original argument. A two-dimensional byte array becomes a vector of strings, and
a byte vector becomes a scalar string. However, a byte scalar also becomes a string
scalar. For example, the statement

PRINT, STRING([72B, 101B, 108B, 108B, 111B])

produces the output below:

Hello

This output results because the argument to STRING, as produced by the array
concatenation operator, is a byte vector. Its first element is 72B which is the ASCII
code for “H,” the second is 101B which is an ASCII “e,” and so forth. The PRINT
keyword can be used to disable this feature and cause STRING to treat byte data in
the usual way.

As discussed in Chapter 8, “Files and Input/Output”, it is easier to read fixed-length
string data from binary files into byte variables instead of string variables. Therefore,
it is convenient to read the data into a byte array and use this special behavior of
STRING to convert the data into string form.

Another use for this feature is to build strings that contain nonprintable characters in
a way such that the character is not entered directly. This results in programs that are
easier to read and that also avoid file transfer difficulties (some forms of file transfer
have problems transferring nonprintable characters). Due to the way in which strings
are implemented in IDL, applying the STRING function to a byte array containing a
null (zero) value will result in the resulting string being truncated at that position.
Thus, the statement,

PRINT, STRING([65B, 66B, 0B, 67B])

produces the following output:

AB
Building IDL Applications Byte Arguments and Strings



66 Chapter 4: Strings
This output is produced because the null byte in the third position of the byte array
argument terminates the string and hides the last character.

Note
The BYTE function, when called with a single argument of type string, performs
the inverse operation to that described above, resulting in a byte array containing
the same byte values as its string argument. For additional information about the
BYTE function, see “Type Conversion Functions” on page 49.
Byte Arguments and Strings Building IDL Applications



Chapter 4: Strings 67
Case Folding

The and STRUPCASE functions are used to convert arguments to lowercase or
uppercase. They have the form:

S = STRLOWCASE(String)

S = STRUPCASE(String)

where String is the string to be converted to lowercase or uppercase.

The following IDL statements generate a table of the contents of TREES showing
each name in its actual case, lowercase and uppercase:

FOR I=0, 6 DO PRINT, trees[I], STRLOWCASE(trees[I]),$
STRUPCASE(trees[I]), FORMAT = '(A, T15, A, T30, A)'

The resulting output from running this statement is as follows:

A common use for case folding occurs when writing IDL procedures that require
input from the user. By folding the case of the response, it is possible to handle
responses written in uppercase, lowercase, or mixed case. For example, the following
IDL statements can be used to ask “yes or no” style questions:

;Create a string variable to hold the response.
answer = ''

;Ask the question.
READ, 'Answer yes or no:  ', answer
IF (STRUPCASE(answer) EQ 'YES') THEN $

;Compare the response to the expected answer.
PRINT,'YES' ELSE PRINT, 'NO'

Beech beech BEECH

Birch birch BIRCH

Mahogany mahogany MAHOGANY

Maple maple MAPLE

Oak oak OAK

Pine pine PINE

Walnut walnut WALNUT
Building IDL Applications Case Folding



68 Chapter 4: Strings
Whitespace

The STRCOMPRESS and STRTRIM functions are used to remove unwanted white
space (tabs and spaces) from a string. This can be useful when reading string data
from arbitrarily formatted strings.

Removing All Whitespace

The function STRCOMPRESS returns a copy of its string argument with all white
space replaced with a single space or completely removed. It has the form:

S = STRCOMPRESS(String)

where String is the string to be compressed.

The default action is to replace each section of white space with a single space.
Setting the REMOVE_ALL keyword causes white space to be completely
eliminated. For example,

;Create a string with undesirable white space. Such a string might
;be the result of reading user input with a READ statement.
A = ' This is a poorly spaced sentence. '

;Print the result of shrinking all white space to a single blank.
PRINT, '>', STRCOMPRESS(A), '<'

;Print the result of removing all white space.
PRINT '>', STRCOMPRESS(A, /REMOVE_ALL), '<'

results in the output:

> This is a poorly spaced sentence. <
>Thisisapoorlyspacedsentence.<

Removing Leading or Trailing Blanks

The function STRTRIM returns a copy of its string argument with leading and/or
trailing white space removed. It has the form:

S = STRTRIM(String[, Flag])

where String is the string to be trimmed and Flag is an integer that indicates the
specific trimming to be done. If Flag is 0 or is not present, trailing white space is
removed. If it is 1, leading white space is removed. Both trailing and leading white
space are removed if Flag is equal to 2. For example:
Whitespace Building IDL Applications



Chapter 4: Strings 69
;Create a string with unwanted leading and trailing blanks.
A = ' This string has leading and trailing white space '

;Remove trailing white space.
PRINT, '>', STRTRIM(A), '<'

;Remove leading white space.
PRINT, '>', STRTRIM(A,1), '<'

;Remove both.
PRINT, '>', STRTRIM(A,2), '<'

Executing these statements produces the output below.

>     This string has leading and trailing white space<
>This string has leading and trailing white space    <
>This string has leading and trailing white space<

Removing All Types of Whitespace

When processing string data, STRCOMPRESS and STRTRIM can be combined to
remove leading and trailing white space and shrink any white space in the middle
down to single spaces.

;Create a string with undesirable white space.
A = 'Yet another poorly spaced sentence. '

;Eliminate unwanted white space.
PRINT, '>' STRCOMPRESS(STRTRIM(A,2)), '<'

Executing these statements gives the result below:

>Yet another poorly spaced sentence.<
Building IDL Applications Whitespace



70 Chapter 4: Strings
Finding the Length of a String

The STRLEN function is used to obtain the length of a string. It has the form:

L = STRLEN(String)

where String is the string for which the length is required. For example, the following
statement

PRINT, STRLEN('This sentence has 31 characters')

results in the output

31

while the following IDL statement prints the lengths of all the names contained in the
array TREES.

PRINT, STRLEN(trees)

The resulting output is as follows:

 5        5        8        5        3        4        6
Finding the Length of a String Building IDL Applications



Chapter 4: Strings 71
Substrings

IDL provides the STRPOS, STRPUT, and STRMID routines to locate, insert, and
extract substrings from their string arguments.

Searching for a Substring

The STRPOS function is used to search for the first occurrence of a substring. It has
the form

S = STRPOS(Object, Search_string[, Position])

where Object is the string to be searched, Search_string is the substring to search for,
and Position is the character position (starting with position 0) at which the search is
begun. If the optional argument Position is omitted, the search is started at the first
character (character position 0). The following IDL procedure counts the number of
times that the word “dog” appears in the string “dog cat duck rabbit dog cat dog”:

PRO Animals

;The search string, "dog", appears three times.
animals = 'dog cat duck rabbit dog cat dog'

;Start searching in character position 0.
I = 0

;Number of occurrences found.
cnt = 0

;Search for an occurrence.
WHILE (I NE -1) DO BEGIN

I = STRPOS(animals, 'dog', I)

IF (I NE -1) THEN BEGIN
;Update counter.
cnt = cnt + 1

;Increment I so as not to count the same instance of 'dog'
;twice.
I = I + 1

ENDIF
ENDWHILE

;Print the result.
PRINT, 'Found ', cnt, " occurrences of 'dog'"
END
Building IDL Applications Substrings



72 Chapter 4: Strings
Running the above program produces the result below.

Found         3 occurrences of 'dog'

Searching For the Last Occurrence of a Substring

The REVERSE_SEARCH keyword to the STRPOS function makes it easy to find
the last occurrence of a substring within a string. In the following example, we search
for the last occurrence of the letter “I” (or “i”) in a sentence:

sentence = 'IDL is fun.'
sentence = STRUPCASE(sentence)
lasti = STRPOS(sentence, 'I', /REVERSE_SEARCH)
PRINT, lasti

This results in:

4

Note that although REVERSE_SEARCH tells STRPOS to begin searching from the
end of the string, the STRPOS function still returns the position of the search string
starting from the beginning of the string (where 0 is the position of the first
character).

Inserting the Contents of One String into Another

The STRPUT procedure is used to insert the contents of one string into another. It has
the form,

STRPUT, Destination, Source[, Position]

where Destination is the string to be overwritten, Source is the string to be inserted,
and Position is the first character position within Destination at which Source will be
inserted. If the optional argument Position is omitted, the overwrite is started at the
first character (character position 0). The following IDL statements use STRPOS and
STRPUT to replace every occurrence of the word “dog” with the word “CAT” in the
string “dog cat duck rabbit dog cat dog”:

animals = 'dog cat duck rabbit dog cat dog'
;The string to search, "dog", appears three times.

;While any occurrence of "dog" exists, replace it.
WHILE (((I = STRPOS(animals, 'dog'))) NE -1) DO $
STRPUT, animals, 'CAT', I

;Show the resulting string.
PRINT, animals
Substrings Building IDL Applications



Chapter 4: Strings 73
Running the above statements produces the result below.

CAT cat duck rabbit CAT cat CAT

Extracting Substrings

The STRMID function is used for extracting substrings from a larger string. It has the
form:

STRMID(Expression, First_Character [, Length])

where Expression is the string from which the substring will be extracted,
First_Character is the starting position within Expression of the substring (the first
position is position 0), and Length is the length of the substring to extract. If there are
not Length characters following the position First_Character, the substring will be
truncated. If the Length argument is not supplied, STRMID extracts all characters
from the specified starting position to the end of the string. The following IDL
statements use STRMID to print a table matching the number of each month with its
three-letter abbreviation:

;String containing all the month names.
months = 'JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC'

;Extract each name in turn. The equation (I-1)*3 calculates the
;position within MONTH for each abbreviation
FOR I = 1, 12 DO PRINT, I, ' ', $
STRMID(months, (I - 1) * 3, 3)

The result of executing these statements is as follows:

1 JAN
2 FEB
3 MAR
4 APR
5 MAY
6 JUN
7 JUL
8 AUG
9 SEP
10 OCT
11 NOV
12 DEC
Building IDL Applications Substrings



74 Chapter 4: Strings
Splitting and Joining Strings

The STRSPLIT function is used to break apart a string, and the STRJOIN function is
used to glue together separate strings into a single string.

The STRSPLIT function uses the following syntax:

Result = STRSPLIT( String [, Pattern] )

where String is the string to be split, and Pattern is either a string of character codes
used to specify the delimiter, or a regular expression, as implemented by the
STREGEX function.

The STRJOIN function uses the following syntax:

Result = STRJOIN( String [, Delimiter] )

where String is the string or string array to be joined, and Delimiter is the separator
string to use between the joined strings.

The following example uses STRSPLIT to extract words from a sentence into an
array, modifies the array, and uses STRJOIN to rejoin the individual array elements
into a new sentence:

str1 = 'Hello Cruel World'
words = STRSPLIT(str1, ' ', /EXTRACT)
newwords=[words[0],words[2]]
PRINT, STRJOIN(newwords, ' ')

This code results in the following output:

Hello World

In this example, the EXTRACT keyword caused STRSPLIT to return the substrings
as array elements, rather than the default action of returning an array of character
offsets indicating the position of each substring.

The STRJOIN function allows us to specify the delimiter used to join the strings.
Instead of using a space as in the above example, we could use a different delimiter as
follows:

str1 = 'Hello Cruel World'
words = STRSPLIT(str1, ' ', /EXTRACT)
newwords=[words[0],words[2]]
PRINT, STRJOIN(newwords, ' Kind ')

This code results in the following output:

Hello Kind World
Splitting and Joining Strings Building IDL Applications



Chapter 4: Strings 75
Comparing Strings

IDL provides several different mechanisms for performing string comparisons. In
addition to the EQ operator, the STRCMP, STRMATCH, and STREGEX functions
can all be used for string comparisons.

Case-Insensitive Comparisons of the First N Characters

The STRCMP function simplifies case-insensitive comparisons, and comparisons of
only the first N characters of two strings. The STRCMP function uses the following
syntax:

Result = STRCMP( String1, String2 [, N] )

where String1 and String2 are the strings to be compared, and N is the number of
characters from the beginning of the string to compare.

Using the EQ operator to compare the first 3 characters of the strings “Moose” and
“mOO” requires the following steps:

A = 'Moose'
B = 'mOO'

C=STRMID(A,0,3)

IF (STRLOWCASE(C) EQ STRLOWCASE(B)) THEN PRINT, "It's a match!"

Using the EQ operator for this case-insensitive comparison of the first 3 characters
requires the STRMID function to extract the first 3 characters, and the
STRLOWCASE (or STRUPCASE) function to change the case.

The STRCMP function could be used to simplify this comparison:

A='Moose'
B='mOO'

IF (STRCMP(A,B,3, /FOLD_CASE) EQ 1) THEN PRINT, "It's a match!"

The optional N argument of the STRCMP function allows us to easily specify how
many characters to compare (from the beginning of the input strings), and the
FOLD_CASE keyword specifies a case-insensitive search. If N is omitted, the full
strings are compared.
Building IDL Applications Comparing Strings



76 Chapter 4: Strings
String Comparisons Using Wildcards

The STRMATCH function can be used to compare a search string containing
wildcard characters to another string. It is similar in function to the way the standard
UNIX command shell processes file wildcard characters.

The STRMATCH function uses the following syntax:

Result = STRMATCH( String, SearchString )

where String is the string in which to search for SearchString.

SearchString can contain the following wildcard characters:

The following examples demonstrate various uses of wildcard matching:

Example 1: Find all 4-letter words in a string array that begin with “f” or “F” and end
with “t” or “T”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, str[WHERE(STRMATCH(str, 'f??t', /FOLD_CASE) EQ 1)]

This results in:

foot Feet FAST fort

Example 2: Find words of any length that begin with “f” and end with “t”:

Wildcard
Character Description

* Matches any string, including the null string.

? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of
characters separated by "-" matches any character lexically
between the pair, inclusive. If the first character following the
opening [ is a !, any character not enclosed is matched. To
prevent one of these characters from acting as a wildcard, it
can be quoted by preceding it with a backslash character (e.g.
"\*" matches the asterisk character). Quoting any other
character (including \ itself) is equivalent to the character (e.g.
"\a" is the same as "a").

Table 4-1: Wildcard Characters used by STRMATCH
Comparing Strings Building IDL Applications



Chapter 4: Strings 77
str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, str[WHERE(STRMATCH(str, 'f*t', /FOLD_CASE) EQ 1)]

This results in:

foot Feet FAST ferret fort

Example 3: Find 4-letter words beginning with “f” and ending with “t”, with any
combination of “o” and “e” in between:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, str[WHERE(STRMATCH(str, 'f[eo][eo]t', /FOLD_CASE) EQ 1)]

This results in:

foot Feet

Example 4: Find all words beginning with “f” and ending with “t” whose second
character is not the letter “o”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, str[WHERE(STRMATCH(str, 'f[!o]*t', /FOLD_CASE) EQ 1)]

This results in:

Feet FAST ferret

Complex Comparisons Using Regular Expressions

A more difficult search than the one above would be to find words of any length
beginning with “f” and ending with “t” without the letter “o” in between. This would
be difficult to accomplish with STRMATCH, but could be easily accomplished using
the STREGEX function:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRINT, STREGEX(str, '^f[^o]*t$', /EXTRACT, /FOLD_CASE)

This statement results in:

Feet FAST ferret

Note the following about this example:

• Unlike the * wildcard character used by STRMATCH, the * meta character
used by STREGEX applies to the item directly on its left, which in this case is
[^o], meaning “any character except the letter ‘o’ ”. Therefore, [^o]* means
“zero or more characters that are not ‘o’ ”, whereas the following statement
would find only words whose second character is not “o”:

PRINT, str[WHERE(STRMATCH(str, 'f[!o]*t', /FOLD_CASE) EQ 1)]
Building IDL Applications Comparing Strings



78 Chapter 4: Strings
• The anchors (^ and $) tell STREGEX to find only words that begin with “f”
and end with “t”. If we left out the $ anchor, STREGEX would also return
“fat”, which is a substring of “fate”.

Regular expressions are somewhat more difficult to use than simple wildcard
matching (which is why the UNIX shell does matching) but in exchange offers
unparalleled expressive power.

For more on the STREGEX function, see STREGEX in the IDL Reference Guide,
and for an introduction to regular expressions, see “Learning About Regular
Expressions” on page 79.
Comparing Strings Building IDL Applications



Chapter 4: Strings 79
Learning About Regular Expressions

Regular expressions are a very powerful way to match arbitrary text. Stemming from
neurophysiological research conducted in the early 1940’s, their mathematical
foundation was established during the 1950’s and 1960’s. Their use has a long history
in computer science, and they are an integral part of many UNIX tools, including
awk, egrep, lex, perl, and sed, as well as many text editors. Regular expressions are
slower than simple pattern matching algorithms, and they can be cryptic and difficult
to write correctly. Small mistakes in specification can yield surprising results. They
are, however, vastly more succinct and powerful than simple pattern matching, and
can easily handle tasks that would be difficult or impossible otherwise.

The topic of regular expressions is a very large one, complicated by the arbitrary
differences in the implementations found in various tools. Anything beyond an
extremely simplistic sketch is well beyond the scope of this manual. To understand
them better, we recommend a good text on the subject, such as “Mastering Regular
Expressions”, by Jeffrey E.F. Friedl (O'Reilly & Associates, Inc, ISBN 1-56592-257-
3). The following is an abbreviated, simplified, and incomplete explanation of regular
expressions, sufficient to gain a cursory understanding of them.

The regular expression engine attempts to match the regular expression against the
input string. Such matching starts at the beginning of the string and moves from left
to right. The matching is considered to be “greedy”, because at any given point, it
will always match the longest possible substring. For example, if a regular expression
could match the substring ‘aa’ or ‘aaa’, it will always take the longer option.

Meta Characters

A regular expression “ordinary character” is a character that matches itself. Most
characters are ordinary. The exceptions, sometimes called “meta characters”, have
special meanings. To convert a meta character into an ordinary one, you “escape” it
by preceding it with a backslash character (e.g. '\*'). The meta characters are
described in the following table:
Building IDL Applications Learning About Regular Expressions



80 Chapter 4: Strings
Character Description

. The period matches any character.

[ ] The open bracket character indicates a “bracket expression”,
which is discussed below. The close bracket character
terminates such an expression.

\ The backslash suppresses the special meaning of the character
it precedes, and turns it into an ordinary character. To insert a
backslash into your regular expression pattern, use a double
backslash ('\\').

( ) The open parenthesis indicates a “subexpression”, discussed
below. The close parenthesis character terminates such a
subexpression.

Repetition
Characters

These characters are used to specify repetition. The repetition
is applied to the character or expression directly to the left of
the repetition operator.

* Zero or more of the character or expression to the left. Hence,
'a*' means “zero or more instances of 'a' ”.

+ One or more of the character or expression to the left. Hence,
'a+' means “one or more instances of 'a'”.

? Zero or one of the character or expression to the left. Hence,
'a?' will match 'a' or the empty string ''.

{} An interval qualifier allows you to specify exactly how many
instances of the character or expression to the left to match. If
it encloses a single unsigned integer length, it means to match
exactly that number of instances. Hence, 'a{3}' will match
'aaa'. If it encloses 2 such integers separated by a comma, it
specifies a range of possible repetitions. For example, 'a{2,4}'
will match 'aa', 'aaa', or 'aaaa'. Note that '{0,1}' is equivalent to
'?'.

Table 4-2: Meta characters
Learning About Regular Expressions Building IDL Applications



Chapter 4: Strings 81
Subexpressions

Subexpressions are those parts of a regular expression enclosed in parentheses. There
are two reasons to use subexpressions:

• To apply a repetition operator to more than one character. For example,
'(fun){3}' matches 'funfunfun', while 'fun{3}' matches 'funnn'.

• To allow location of the subexpression using the SUBEXPR keyword to
STREGEX.

Bracket Expressions

Bracket expressions (expressions enclosed in square brackets) are used to specify a
set of characters that can satisfy a match. Many of the meta characters described
above (.*[\) lose their special meaning within a bracket expression. The right bracket
loses its special meaning if it occurs as the first character in the expression (after an
initial '^', if any).

There are several different forms of bracket expressions, including:

• Matching List — A matching list expression specifies a list that matches any
one of the characters in the list. For example, '[abc]' matches any of the
characters 'a', 'b', or 'c'.

• Non-Matching List — A non-matching list expression begins with a '^', and
specifies a list that matches any character not in the list. For example, '[^abc]'

| Alternation. This operator is used to indicate that one of
several possible choices can match. For example, '(a|b|c)z'
will match any of 'az', 'bz', or 'cz'.

^ $ Anchors. A '^' matches the beginning of a string, and '$'
matches the end. As we have seen above, regular expressions
usually match any possible substring. Anchors can be used to
change this and require a match to occur at the beginning or
end of the string. For example, '^abc' will only match strings
that start with the string 'abc'. '^abc$' will only match a string
containing only 'abc'.

Character Description

Table 4-2: Meta characters
Building IDL Applications Learning About Regular Expressions



82 Chapter 4: Strings
matches any characters except 'a', 'b', or 'c'. The '^' only has this special
meaning when it occurs first in the list immediately after the opening '['.

• Range Expression — A range expression consists of 2 characters separated by
a hyphen, and matches any characters lexically within the range indicated. For
example, '[A-Za-z]' will match any alphabetic character, upper or lower case.
Another way to get this effect is to specify '[a-z]' and use the FOLD_CASE
keyword to STREGEX.
Learning About Regular Expressions Building IDL Applications



Chapter 5:

Arrays
The following topics are covered in this chapter:
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . .  84
Array Subscripts  . . . . . . . . . . . . . . . . . . . . .  85
Array Subscript Syntax: [ ] vs. ( ) . . . . . . . .  86
Subscript Examples . . . . . . . . . . . . . . . . . . .  87
Subscript Ranges . . . . . . . . . . . . . . . . . . . . .  90

Structure of Subarrays . . . . . . . . . . . . . . . . . 91
Using Arrays as Subscripts  . . . . . . . . . . . . . 92
Combining Array Subscripts with Others  . . 94
Storing Elements with Array Subscripts  . . . 96
Building IDL Applications 83



84 Chapter 5: Arrays
Overview

Arrays are multidimensional data sets which are manipulated according to
mathematical rules. Array elements can be of any IDL data type, but all elements of a
given array must be of the same data type. Array subscripts provide a means of
selecting one or more elements of an array for retrieval or modification.

One-dimensional arrays are often called vectors. The following IDL statement
creates a vector with five single-precision floating-point elements:

array = [1.0, 2.0, 3.0, 4.0, 5.0]

Two-dimensional arrays are often used in image processing and in mathematical
operations (where they are often termed matrices). The following IDL statement
creates a three-column by two-row array:

array = [[1, 2, 3], [4, 5, 6]]

Use the PRINT procedure to display the contents of the array:

PRINT, array

IDL prints:

       1       2       3
       4       5       6

Arrays can have up to eight dimensions in IDL. The following IDL statement creates
a three-column by four-row by five-layer deep three-dimensional array. In this case,
we use the IDL FINDGEN function to create an array whose elements are set equal to
the floating-point values of their one-dimensional subscripts:

array = FINDGEN(3, 4, 5)

IDL is an array-oriented language. This means that array operations execute more
efficiently than similar one-dimensional operations. For example, suppose you have a
three-dimensional array and wish to divide each element by two. A language that
does not support array operations would create a loop to perform the division for each
element; IDL accomplishes the division in a single line of code:

array = array/2
Overview Building IDL Applications



Chapter 5: Arrays 85
Array Subscripts

Subscripts provide a means of selecting one or more elements of an array for retrieval
or modification.

The values of the selected array elements are extracted when a subscripted variable
reference appears in an expression. New values are stored in selected array elements,
without disturbing the remaining elements, when a subscript reference appears on the
left side of an assignment statement. Chapter 10, “Assignment” discusses the use of
the different types of assignment statements when storing into arrays.

The subscripts of an array element denote the address of the element within the array.
In the simple case of a one-dimensional array, an n-element vector, elements are
numbered starting at 0 with the first element, 1 for the second element, and running to
n − 1, the subscript of the last element.

Arrays with multiple dimensions are addressed by specifying a subscript expression
for each dimension. A two-dimensional array, a matrix with n columns and m rows, is
addressed with a subscript of the form [i, j], where 0 ≤ i < n and 0 ≤ j < m. The first
subscript, i, is the column index; the second subscript, j, is the row index. The syntax
of a subscript reference is:

Variable_Name [Subscript_ List]

or

(Array_Expression)[Subscript_List]

The Subscript_List is simply a list of expressions, constants, or subscript ranges
containing the values of one or more subscripts. Subscript expressions are separated
by commas if there is more than one subscript. In addition, multiple elements are
selected with subscript expressions that contain either a contiguous range of
subscripts or an array of subscripts.
Building IDL Applications Array Subscripts



86 Chapter 5: Arrays
Array Subscript Syntax: [ ] vs. ( )

Versions of IDL prior to version 5.0 used parentheses to indicate array subscripts.
Function calls use parentheses in a visually identical way to specify argument lists.
As a result, the IDL compiler is not able to distinguish between arrays and functions
by looking at the statement syntax. For example, the IDL statement

value = fish(5)

could either set the variable value equal to the sixth element of an array named fish,
or set value equal to the result of passing the argument 5 to a function called fish.

To determine if it is compiling an array subscript or a function call, IDL checks its
internal table of known functions. If it finds a function name that matches the
unknown element in the command (fish, in the above example), it calls that
function with the argument specified. If IDL does not find a function with the correct
name in its table of known functions, it assumes that the unknown element is an
array, and attempts to return the value of the designated element of that array. This
rule generally gives the desired result, but it can be fooled into the wrong choice
under certain circumstances, much to the surprise of the unwary programmer.

For this reason, versions of IDL beginning with version 5.0 use square brackets rather
than parentheses for array subscripting. An array subscripted in this way is
unambiguously interpreted as an array under all circumstances. In IDL 5.0 and later:

value = fish[5]

sets value to the sixth element of an array named fish.

Due to the large amount of existing IDL code written in the older syntax, as well as
the ingrained habits of thousands of IDL users, IDL continues to allow the old syntax
to be used, subject to the ambiguity mentioned above. That is, while

value = fish[5]

is unambiguous,

value = fish(5)

is still subject to the same ambiguity—and rules—that applied in IDL versions prior
to version 5.0

Since the older syntax has been used widely, you should not be surprised to see it
from time to time. However, square brackets are the preferred form, and should be
used for new code.
Array Subscript Syntax: [ ] vs. ( ) Building IDL Applications



Chapter 5: Arrays 87
Subscript Examples

Subscripts can be used either to retrieve the value of one or more array elements or to
designate array elements to receive new values. The expression ARR[12] denotes the
value of the 13th element of ARR (because subscripts start at 0), while the statement
ARR[12] = 5 stores the number 5 in the 13th element of ARR without changing the
other elements.

Elements of multidimensional arrays are specified by using one subscript for each
dimension. In arrays and images, the first subscript denotes the column and the
second subscript is the row. For matrices, the first subscript denotes the row and the
second subscript is the column.

If A is a 2-element by 3-element array, the elements are stored in memory as follows:

The elements are ordered in memory as: A0,0, A1,0, A0,1, A1,1, A0,2, A1,2, etc. Thus,
IDL arrays are row major (i.e., stored by rows). This ordering is like FORTRAN. It is
the opposite of the way C and Pascal handle arrays. IDL uses row major storage
because it is oriented toward image processing while the other languages stress
matrix computation. For a more extensive discussion of row versus column majority
and how it relates to IDL mathematics routines, see “Arrays and Matrices” in Chapter
16 of the Using IDL manual.

Images are usually displayed with row zero at the bottom of the screen, matching the
display’s coordinate system, although this order can be reversed by setting the system
variable !ORDER to a nonzero value. Arrays are printed with the first row on top.

Elements of multidimensional arrays also can be specified using only one subscript,
in which case the array is treated as a vector with the same number of points. In the
above example, A[2] is the same element as A [0, 1], and A[5] is the same element as
A[1, 2].

Stored in Memory

A0,0 A1,0 Lowest memory address

A0,1 A1,1 .
.
.

A0,2 A1,2 Highest memory address

Table 5-1: Storage of IDL Array Elements in Memory
Building IDL Applications Subscript Examples



88 Chapter 5: Arrays
If an attempt is made to reference a nonexistent element of an array using a scalar
subscript (a subscript that is negative or larger than the size of the dimension minus
1), an error occurs and program execution stops.

Subscripts can be any type of vector or scalar expression. If a subscript expression is
not integer, a longword integer copy is made and used to evaluate the subscript.

“Extra” Dimensions

When creating arrays, IDL eliminates all size 1, or “degenerate”, trailing dimensions.
Thus, the statements

A = INTARR(10, 1)
HELP, A

print the following:

A               INT       = Array(10)

This removal of superfluous dimensions is usually convenient, but it can cause
problems when attempting to write fully general procedures and functions. Therefore,
IDL allows you to specify “extra” dimensions for an array as long as the extra
dimensions are all zero. For example, consider a vector defined as follows:

ARR = INDGEN(10)

The following are all valid references to the sixth element of ARR:

X = ARR[5]
X = ARR[5, 0]
X = ARR[5, 0, 0, *, 0]

Thus, the automatic removal of degenerate trailing dimensions does not cause
problems for routines that attempt to access the resulting array.

Subscripting Scalars

Scalar quantities in IDL can be though of as arrays with dimensions of (1,0). They
can be subscripted with a zero reflecting the first and only position. Therefore,

;Assign the value of 5 to A.
A = 5

;Print the value of the first element of A.
PRINT, A[0]

IDL prints:

5

Subscript Examples Building IDL Applications



Chapter 5: Arrays 89
If we redefine the first element of A:

;Redefine the first element of A.
A[0] = 6

PRINT, A

IDL prints:

6

Note
You cannot subscript a variable that has not yet been defined. Thus, if the variable B
has not been previously defined, the statement:

B[0] = 9

will fail with the error “variable is undefined.”
Building IDL Applications Subscript Examples



90 Chapter 5: Arrays
Subscript Ranges

Subscript ranges are used to select a subarray from an array by giving the starting and
ending subscripts of the subarray in each dimension. Subscript ranges can be
combined with scalar and array subscripts and with other subscript ranges. Any
rectangular portion of an array can be selected with subscript ranges. There are four
types of subscript ranges:

• A range of subscripts, written [e0:e1], denoting all elements whose subscripts
range from the expression e0 through e1 (e0 must not be greater than e1). For
example, if the variable VEC is a 50-element vector, VEC[5:9] is a five-
element vector composed of VEC[5] through VEC[9].

• All elements from a given element to the last element of the dimension, written
as [e:*]. Using the above example, VEC[10:*] is a 40-element vector made
from VEC[10] through VEC[49].

• A simple subscript, [n]. When used with multidimensional arrays, simple
subscripts specify only elements with subscripts equal to the given subscript in
that dimension.

• All elements of a dimension, written [*]. This form is used with
multidimensional arrays to select all elements along the dimension. For
example, if ARR is a 10-column by 12-row array, ARR[*, 11] is the last row of
ARR, composed of elements [ARR[0,11], ARR[1,11], ..., ARR[9,11]], and is a
10-element row vector. Similarly, ARR[0, *] is the first column of ARR,
[ARR[0,0], ARR[0,1],..., ARR[0,11]], and its dimensions are 1 column by 12
rows.

Multidimensional subarrays can be specified using any combination of the above
forms. For example, ARR[*, 0:4] is made from all columns of rows 0 to 4 of ARR
or a 10-column, 5-row matrix. The table below summarizes the possible forms of
subscript ranges:

Form Description

e A simple subscript expression

e0:e1 Subscript range from e0 to e1

e:* All points from element e to end

* All points in the dimension

Table 5-2: Subscript Ranges
Subscript Ranges Building IDL Applications



Chapter 5: Arrays 91
Structure of Subarrays

The dimensions of the extracted subarray are determined by the size in each
dimension of the subscript range expression. In general, the number of dimensions is
equal to the number of subscripts and subscript ranges. The size of the n-th
dimension is equal to one if a simple subscript was used to specify that dimension in
the subscript; otherwise, it is equal to the number of elements selected by the
corresponding range expression.

Degenerate dimensions (trailing dimensions with a size of one) are removed. This
was illustrated in the previous example by the expression ARR[*,11] which resulted
in a row vector with a single dimension because the last dimension of the result was
one and was removed. On the other hand, the expression ARR[0, *] became a column
vector with dimensions of [1, 12] showing that the structure of columns is preserved
because the dimension with a size of one does not appear at the end.

Using the examples of VEC, a 50-element vector, and A, a 10-column by 12-row
array, some typical subscript range expressions are as follows:

;Elements 5 through 10 of VEC, a six-element vector.
VEC[5:10]

;A three-element vector.
VEC[I - 1:I + 1]

;The same vector.
[VEC[I - 1], VEC[I], VEC[I + 1]]

;Elements from VEC(4) to the end, a 46-element (50-4) vector.
VEC[4:*]

;The fourth column of A, a 1 column by 12 row vector.
A[3, *]

;The first row of A, a 10-element row vector. Note, the last
;dimension was removed because it was degenerate.
[A[3, 0], A[3, 1], ..., A[3, 11]]
A[*, 0]

;The nine-point neighborhood surrounding A[X,Y], a 3 by 3 array.
A[X - 1:X + 1, Y - 1:Y + 1]

;Three columns of A, a 3 by 12 subarray:
A[3:5,*]

See Chapter 10, “Assignment” for a description of the process of assigning values to
subarrays.
Building IDL Applications Structure of Subarrays



92 Chapter 5: Arrays
Using Arrays as Subscripts

Arrays can be used as subscripts to other arrays. Each element in the array used as a
subscript selects an element in the subscripted array. When used with subscript
ranges, more than one element may be selected for each subscript element.

If no subscript ranges are present, the length and structure of the result is the same as
that of the subscript expression. The type of the result is the same as that of the
subscripted array. If only one subscript is present, all subscripts are interpreted as if
the subscripted array has one dimension.

In the simple case of only one subscript, in which the subscript is an array, the
process can be written as follows:

The vector V has n elements, and S has m elements. The result V(S) has the same
structure and number of elements as does the subscript vector S.

If an element of the subscript array is less than or equal to zero, the first element of
the subscripted variable is selected. If an element of the subscript is greater than or
equal to the last subscript in the subscripted variable (N, above), the last element is
selected.

Example

As an example, consider the commands:

A = [6, 5, 1, 8, 4, 3]
B = [0, 2, 4, 1]
C = A[B]
PRINT, C

This produces the following output:

6 1 4 5

V S( )
VSi

if 0 Si n<≤

V0 if Si 0<

Vn 1– if Si n≥








= for 0 i m<≤
Using Arrays as Subscripts Building IDL Applications



Chapter 5: Arrays 93
The first element of C is 6 because that is the number in the 0 position of A. The
second is 1 because the value in B of 2 indicates the third position in A, and so on.

As another example, assume the variable A is a 10 by 10 array. The expression
A[INDGEN(10) * 11] yields a 10-element vector equal to the diagonal elements of A.
The subscripts of the diagonal elements, A[0,0], A[1,1], ..., A[9, 9] are equal to 0, 11,
22, 99, when singularly subscripted. The elements of the vector INDGEN(10)*11
also are equal to 0, 11, 22, ..., 99. Applying the vector as a subscript selects the
diagonal elements.

The WHERE function, which returns a vector of subscripts, can be used to select
elements of an array using expressions similar to A[WHERE(A GT 0)] which results
in a vector composed only of the elements of A that are greater than 0.
Building IDL Applications Using Arrays as Subscripts



94 Chapter 5: Arrays
Combining Array Subscripts with Others

Array subscripts can be combined with subscript ranges, simple scalar subscripts, and
other array subscripts.

When IDL encounters a multidimensional subscript that contains one or more
subscript arrays, it builds an array of subscripts by processing each subscript from left
to right. The resulting array of subscripts is then applied to the variable that is to be
subscripted. As with other subscript operations, trailing degenerate dimensions (those
with a size of 1) are eliminated.

Subscript Ranges

When combining an array subscript with a subscript range, the result is an array of
subscripts constructed by combining each element of the subscript array with each
member of the subscript range. Combining an n-element array with an m-element
subscript range yields an nm-element subscript. Each dimension of the result is equal
to the number of elements in the corresponding subscript array or range.

For example, the expression A[[1, 3, 5], 7:9] is a nine-element, 3 × 3 array composed
of the following elements:

Each element of the three-element subscript array (1, 3, 5) is combined with each
element of the three-element range (7, 8, 9).

Another example shows the common process of zeroing the edge elements of a two-
dimensional n × m array:

;Zero the first and last rows.
A[*, [0, M-1]] = 0

;Zero the first and last columns.
A[[0, N - 1], *] = 0

Other Subscript Arrays

When combining two subscript arrays, each element of the first array is combined
with the corresponding element of the other subscript array. The two subscript arrays

A1 7, A3 7, A5 7,

A1 8, A3 8, A5 8,

A1 9, A3 9, A5 9,
Combining Array Subscripts with Others Building IDL Applications



Chapter 5: Arrays 95
must have the same number of elements. The resulting subscript array has the same
number of elements as its constituents. For example, the expression A[[1, 3], [5, 9]]
yields the elements A[1,5] and A[3,9].

Scalars

Combining an n-element subscript range or n-element subscript array with a scalar
yields an n-element result. The value of the scalar is combined with each element of
the range or array. For example, the expression A[[1, 3, 5], 8] yields the three-
element vector composed of the elements A[1,8], A[3,8], and A[5,8]. The second
dimension of the result is 1 and is eliminated because it is degenerate. The expression
A[8, [1, 3, 5]] is the 1 × 3-column vector A[8,1], A[8,3], and A[8,5], illustrating that
leading dimensions are not eliminated.
Building IDL Applications Combining Array Subscripts with Others



96 Chapter 5: Arrays
Storing Elements with Array Subscripts

One or more values can be stored in selected elements of an array by using an array
expression as a subscript for the array on the left side of an assignment statement.
Values are taken from the expression on the right side of the assignment statement
and stored in the elements whose subscripts are given by the array subscript. The
right-hand expression can be either a scalar or array.

The subscript array is converted to longword type before use if necessary. Regardless
of structure, this subscript array is interpreted as a vector. For details and examples of
storing with vector subscripts, see Chapter 10, “Assignment”.

Examples

The statement:

A[[2, 4, 6]] = 0

zeroes elements A[2], A[4], and A[6], without changing other elements of A. The
statement:

A[[2, 4, 6]] = [4, 16, 36]

stores 4 in A[2], 16 in A[4], and 36 in A[6].

One way to create a square n × n identity matrix is as follows:

A = FLTARR(N, N)
A[INDGEN(N) * (N + 1)] = 1.0

The expression INDGEN(N)*(N + 1) results in a vector containing the subscripts of
the diagonal elements [0, N+1, 2N+2, ..., (N-1)*(N+1)]. Yet another way is to use
two array subscripts. The statements:

A = FLTARR(N, N)
A[INDGEN(N), INDGEN(N)] = 1.0

create the array subscripts [[0,0], [1,1], ..., [n-1, n-1]]. The statement:

A[WHERE(A LT 0)] = -1

sets negative elements of A to -1.

The following statements create a 10x10 identity matrix:

A = FLTARR(10, 10)
A[INDGEN(10) * 11] = 1
Storing Elements with Array Subscripts Building IDL Applications



Chapter 6:

Structures
The following topics are covered in this chapter:
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . .  98
Creating and Defining Structures  . . . . . . . .  99
Structure References . . . . . . . . . . . . . . . . .  102
Using HELP with Structures . . . . . . . . . . .  104
Parameter Passing with Structures  . . . . . .  105

Arrays of Structures . . . . . . . . . . . . . . . . . . 108
Structure Input/Output . . . . . . . . . . . . . . . . 110
Advanced Structure Usage . . . . . . . . . . . . . 112
Automatic Structure Definition  . . . . . . . . . 114
Relaxed Structure Assignment . . . . . . . . . . 116
Building IDL Applications 97



98 Chapter 6: Structures
Overview

IDL supports structures and arrays of structures. A structure is a collection of scalars,
arrays, or other structures contained in a variable. Structures are useful for
representing data in a natural form, transferring data to and from other programs, and
containing a group of related items of various types. There are two types of structures
and they have similar features.

Named Structures

Each distinct type of named structure is defined by a unique structure name. The first
time a structure name is used, IDL creates and saves a definition of the structure
which cannot be changed. Each structure definition consists of the structure’s name
and a definition of each field that is a member of the structure. Each instance of a
named structure shares the same definition. Named structures are used when their
definitions will not be changed.

Anonymous Structures

If a structure definition contains no name, an anonymous structure is created. A
unique structure definition is created for each anonymous structure. Use anonymous
structures when the structure, type, and/or dimensions of its components change
during program execution.

Each field definition consists of a tag name and a tag definition that contains the type
and structure of the data contained in the field. A field is referred to by its tag name.
The tag definition is simply an expression or variable. The type, structure, and value
of the tag definition serve to define the field’s type, structure, and value. As with
structure definitions, a field definition is fixed and cannot be changed. The contents
of a field can be any type of data representable by IDL. Fields can contain scalars,
arrays of the seven basic data types, and even other structures or arrays of structures.
Overview Building IDL Applications



Chapter 6: Structures 99
Creating and Defining Structures

A named structure is created by executing a structure-definition expression, which is
an expression of the following form:

{Structure_Name, Tag_Name1 : Tag_Definition1, ..., Tag_Namen : Tag_Definitionn}

Anonymous structures are created in the same way, but with the structure’s name
omitted.

{Tag_Name1 : Tag_Definition1 , ..., Tag_Namen : Tag_Definitionn}

Anonymous structures can also be created and combined using the
CREATE_STRUCT function.

Tag names must be unique within a given structure, although the same tag name can
be used in more than one structure. Structure names and tag names follow the rules of
IDL identifiers: they must begin with a letter; following characters can be letters,
digits, or the underscore or dollar sign characters; and case is ignored.

As mentioned above, each tag definition is a constant, variable, or expression whose
structure defines the structure and initial value of the field. The result of the structure
definition expression is an instance of the structure, with each field set equal to its tag
definition.

A named structure that has already been defined can be referred to by simply
enclosing the structure’s name in braces, as shown below:

{Structure_Name }

The result of this expression is a structure of the designated name.

Note
When a new instance of a structure is created from an existing named structure, all
of the fields in the newly-created structure are zeroed. This means that fields
containing numeric values will contain zeros, fields containing string values will
contain null strings, and fields containing pointers or objects will contain null
pointers or null objects. In other words, no matter what data the original structure
contained, the new structure will contain only a template for that type of data.

Also, when making a named structure that has already been defined, the tag names
need not be present:

{Structure_Name, expression1, ..., expressionn}
Building IDL Applications Creating and Defining Structures



100 Chapter 6: Structures
All of the expressions must agree in structure with the original tag definition.

Once defined, a given named structure type cannot be changed. If a structure
definition with tag names is executed and the structure already exists, each tag name
and the structure of each tag field must agree with the original definition. Anonymous
structures do not have this restriction because each instance has its own definition.

Structure Inheritance

Structures can inherit tag names and definitions from other structures. To cause one
structure to inherit tags from another, use the INHERITS specifier. For example, if
we define a structure one as follows:

A = {one, data1a:0, data1b:0L }

we can define a second structure two that includes the tags from the one structure
with the following definition statement:

B = { two, INHERITS one, data2:0.0 }

This is the same as defining the structure two with the statement:

B = { two, data1a:0, data1b:0L, data2:0.0 }

Note that the fields of the one structure are included in the two structure in the
position that the INHERITS specifier appears in the structure definition.

Remember that tag names must be unique. If you use structure inheritance, be sure
that the tag names in the inherited structure do not conflict with the tag names in the
inheriting structure.

Structures that are inherited must be defined before the inheriting structure can be
defined. If a structure inherits tags from another structure that is not yet defined, IDL
will search for a routine to define the inherited structure as outlined in “Automatic
Structure Definition” on page 114. If the inherited structure cannot be defined,
definition of the new structure fails.

While structure inheritance can be used with any structure, it is most useful when
dealing with object class structures. When the INHERITS specifier is used in a class
structure definition, it has the added effect of defining the inheriting object as a
subclass of the inherited class. For a discussion of object-oriented IDL programming,
see Chapter 20, “Object Basics”.

Example of Creating a Structure

Assume that a star catalog is to be processed. Each entry for a star contains the
following information: star name, right ascension, declination, and an intensity
Creating and Defining Structures Building IDL Applications



Chapter 6: Structures 101
measured each month over the last 12 months. A structure for this information is
defined with the following IDL statement:

A = {star, name:'', ra:0.0, dec:0.0, inten:FLTARR(12)}

This structure definition is the basis for all examples in this chapter. The statement
above defines a structure type named star, which contains four fields. The tag
names are name, ra, dec, and inten. The first field, with the tag name, contains a
scalar string as given by its tag definition. The following two fields each contain
floating-point scalars. The fourth field, inten, contains a 12-element, floating-point
array. Note that the type of the constants, 0.0, is floating point. If the constants had
been written as 0, the fields ra and dec would contain short integers.

 The same structure is created as an anonymous structure by the statement:

A = {name:'', ra:0.0, dec:0.0, inten:FLTARR(12)}

or by using the CREATE_STRUCT function:

A = CREATE_STRUCT('name', '', 'ra', 0.0, 'dec', 0.0, $
'inten', FLTARR(12))
Building IDL Applications Creating and Defining Structures



102 Chapter 6: Structures
Structure References

The basic syntax of a reference to a field within a structure is as follows:

Variable_Name.Tag_Name

Variable_Name must be a variable that contains a structure. Tag_Name is the name
of the field and must exist in the structure. If the field referred to by the tag name is
itself a structure, the Tag_Name can optionally be followed by one or more additional
tag names, as shown by the following example:

var.tag1.tag2

This nesting of structure references can be continued up to 10 levels. Each tag name,
except possibly the last, must refer to a field that contains a structure.

Subscripted Structure References

A subscript specification can be appended to the variable or tag names if the variable
is an array of structures or if the field referred to by the tag contains an array. Scalar
fields within a structure can also be subscripted, provided the subscript is zero.

Variable_Name.Tag_Name[Subscripts]

Variable_Name[Subscripts].Tag_Name...

Variable_Name[Subscripts].Tag_Name[Subscripts]

Each subscript is applied to the variable or tag name it immediately follows. The
syntax and meaning of the subscript specification is similar to simple array
subscripting in that it can contain a simple subscript, an array of subscripts, or a
subscript range. If a variable or field containing an array is referenced without a
subscript specification, all elements of the item are affected. Similarly, when a
variable that contains an array of structures is referenced without a subscript but with
a tag name, the designated field in all array elements is affected. The complete syntax
of references to structures follows. (Optional items are enclosed in braces, {}.)

Structure_reference:= Variable_Name{[Subscripts]}.Tags

Tags:= {Tags.}Tag

Tag:= Tag_Name{[Subscripts]}

For example, all of the following are valid structure references:
Structure References Building IDL Applications



Chapter 6: Structures 103
A.B
A.B[N, M]
A[12].B
A[3:5].B[*, N]
A[12].B.C[X, *]

The semantics of storing into a structure field using subscript ranges is slightly
different than that of simple arrays. This is because the structure of arrays in fields are
fixed. See “Storing Into Array Fields” on page 105.

Examples of Structure References

The name of the star contained in A is referenced as A.NAME. The entire intensity
array is referred to as A.INTEN, while the n-th element of A.INTEN is A.INTEN[N].
The following are valid IDL statements using the STAR structure:

;Store a structure of type STAR into variable A. Define the values
;of all fields.
A = {star, name:'SIRIUS', ra:30., dec:40., inten:INDGEN(12)}

;Set name field. Other fields remain unchanged.
A.name = 'BETELGEUSE'

;Print name, right ascension, and declination.
PRINT, A.name, A.ra, A.dec

;Set Q to the value of the sixth element of A.inten. Q will be a
;floating-point scalar.
Q = A.inten[5]

;Set ra field to 23.21.
A.ra = 23.21

;Zero all 12 elements of intensity field. Because the type and size
;of A.inten are fixed by the structure definition, the semantics of
;assignment statements is different than with normal variables.
A.inten = 0

;Store fourth thru seventh elements of inten field in variable B.
B = A.inten[3:6]

;The integer 12 is converted to string and stored in the name field
;because the field is defined as a string.
A.name = 12

;Copy A to B. The entire structure is copied and B contains a STAR
;structure.
B = A
Building IDL Applications Structure References



104 Chapter 6: Structures
Using HELP with Structures

Use the HELP,/STRUCTURE command to determine the type, structure, and tag
name of each field in a structure. In the example above, a structure was stored into
variable A. The statement,

HELP, /STRUCTURE, A

prints the following information:

** Structure STAR, 4 tags, length=40:
NAME            STRING    'SIRIUS'
RA              FLOAT 30.0000
DEC             FLOAT           40.0000
INTEN           INT       Array(12)

Using HELP with anonymous structures prints the structure’s name as a unique
number enclosed in angle brackets. Calling HELP with the STRUCTURE keyword
and no parameters prints a list of all defined, named structure types and their tag
names.
Using HELP with Structures Building IDL Applications



Chapter 6: Structures 105
Parameter Passing with Structures

An entire structure is passed by reference by simply using the name of the variable
containing the structure as a parameter. Changes to the parameter within the
procedure are passed back to the calling procedure. Fields within a structure are
passed by value. For example, the following statement prints the value of the
structure field A.name:

PRINT, A.name

Any reference to a structure with a subscript or tag name is evaluated into an
expression, hence A.name is an expression and is passed by value. This works as
expected unless the called procedure returns information in the parameter. For
example, the call

READ, A.name

does not read into A.name but interprets its parameter as a prompt string. The proper
code to read into the field is as follows.

;Copy type and attributes to variable.
B = A.name

;Read into a simple variable.
READ, B

;Store result into field.
A.name = B

Storing Into Array Fields

As mentioned previously, the semantics of storing into structure array fields is
slightly different than storing into simple arrays. The main difference is that with
structures, a subscript range must be used when storing an array into part of an array
field. With normal arrays, when storing an array inside part of another array, use the
subscript of the lower-left corner, not a range specification. Other differences occur
because the size and type of a field are fixed by the original structure definition, and
the normal IDL semantics of dynamic binding are not applicable. The rules for
storing into array fields are as follows:
Building IDL Applications Parameter Passing with Structures



106 Chapter 6: Structures
VAR.ARRAY_TAG = Scalar_Expression

All elements of VAR.tag are set to Scalar_Expression. For example:

;Set all 12 elements of A.inten to 100.
A.inten = 100

VAR.TAG = Array_Expression

Each element of Array_Expression is copied into the array VAR.tag. If
Array_Expression contains more elements than the destination array does, an error
results. If it contains fewer elements than VAR.TAG, the unmatched elements remain
unchanged. For example:

;Set A.inten to the 12 numbers 0, 1, 2,..., 11.
A.inten = FINDGEN(12)

;Set A.inten[0] to 1 and A.inten[1] to 2. The other elements
;remain unchanged.
A.inten = [1, 2]

VAR.TAG[Subscript] = Scalar_Expression

The value of the scalar expression is simply copied into the designated element of the
destination. If Subscript is an array of subscripts, the scalar expression is copied into
the designated elements. For example:

;Set the sixth element of A.inten to 100.
A.inten[5] = 100

;Set elements 2, 4, and 6 to 100.
A.inten[[2, 4, 6]] = 100

VAR.TAG[Subscript] = Array_Expression

Unless VAR.tag is an array of structures, the subscript must be an array. Each
element of Array_Expression is copied into the element given by the corresponding
element subscript. For example:

;Set elements 2, 4, and 6 to the values 5, 7, and 9 respectively.
A.inten[[2, 4, 6]] = [5, 7, 9]

VAR.TAG[Subscript_Range] = Scalar_Expression

The value of the scalar expression is stored into each element specified by the
subscript range. For example:

;Sets elements 8, 9, 10, and 11 to the value 5.
A.inten[8:*] = 5
Parameter Passing with Structures Building IDL Applications



Chapter 6: Structures 107
VAR.TAG[Subscript_Range] = Array_Expression

Each element of the array expression is stored into the element designated by the
subscript range. The number of elements in the array expression must agree with the
size of the subscript range. For example:

;Sets elements 3, 4, 5, and 6 to the numbers 0, 1, 2, and 3,
;respectively.
A.inten[3:6] = FINDGEN(4)
Building IDL Applications Parameter Passing with Structures



108 Chapter 6: Structures
Arrays of Structures

An array of structures is simply an array in which each element is a structure of the
same type. The referencing and subscripting of these arrays (also called structure
arrays) follow the same rules as simple arrays.

Creating an Array of Structures

The easiest way to create an array of structures is to use the REPLICATE function.
The first parameter to REPLICATE is a reference to the structure of each element.
Using the example in “Examples of Structure References” on page 103 and assuming
the STAR structure has been defined, an array containing 100 elements of the
structure is created with the following statement:

cat = REPLICATE({star}, 100)

Alternatively, since the variable A contains an instance of the structure STAR, then

cat = REPLICATE(A, 100)

Or, to define the structure and an array of the structure in one step, use the following
statement:

cat = REPLICATE({star, name:'', ra:0.0, dec:0.0, $
inten:FLTARR(12)}, 100)

The concepts and combinations of subscripts, subscript arrays, subscript ranges,
fields, nested structures, etc., are quite general and lead to many possibilities, only a
small number of which can be explained here. In general, any structures that are
similar to the examples above are allowed.

Examples of Arrays of Structures

This example uses the above definition in which the variable CAT contains a star
catalog of STAR structures.

;Set the name field of all 100 elements to "EMPTY."
cat.name = 'EMPTY'

;Set the i-th element of cat to the contents of the star structure.
cat[I] = {star, 'BETELGEUSE', 12.4, 54.2, FLTARR(12)}

;Store 0.0 into cat[0].ra, 1.0 into cat[1].ra, ..., 99.0 into
;cat[99].ra
cat.ra = INDGEN(100)
Arrays of Structures Building IDL Applications



Chapter 6: Structures 109
;Prints name field of all 100 elements of cat, separated by commas
;(the last field has a trailing comma).
PRINT, cat.name + ','

;Find index of star with name of SIRIUS.
I = WHERE(cat.name EQ 'SIRIUS')

;Extract intensity field from each entry. Q will be a 12 by 100
;floating-point array.
Q = cat.inten

;Plot intensity of sixth star in array cat.
PLOT, cat[5].inten

;Make a contour plot of the (7,46) floating-point array ;taken from
;months (2:8) and stars (5:50).
CONTOUR, cat[5:50].inten[2:8]

;Sort the array into ascending order by names. Store the result
;back into cat.
cat = cat(SORT(cat.name))

;Determine the monthly total intensity of all stars in array.
;monthly is now a 12-element array.
monthly = cat.inten # REPLICATE(1,100)
Building IDL Applications Arrays of Structures



110 Chapter 6: Structures
Structure Input/Output

Structures are read and written using the formatted and unformatted input/output
procedures READ, PRINT, READU, and WRITEU. Structures and arrays of
structures are transferred in much the same way as simple data types, with each
element of the structure transferred in order.

Formatted Input/Output with Structures

Writing a structure with PRINT or PRINTF and the default format outputs the
contents of each element using the default format for the appropriate data type. The
entire structure is enclosed in braces: “{}”. Each array begins a new line. For
example, printing the variable A, as defined in the first example in this chapter,
results in the following output.

{SIRIUS 30.0000 40.0000 0 1 2 3 4 5 6 7 8 9 10 11}

When reading a structure with READ or READF and the default format, white space
should separate each element. Reading string elements causes the remainder of the
input line to be stored in the string element, regardless of spaces, etc. A format
specification can be used with any of these procedures to override the default
formats. The length of string elements is determined by the format specification (i.e,
to read the next 10 characters into a string field, use an (A10) format).

Unformatted Input/Output with Structures

Reading and writing unformatted data contained in structures is a straightforward
process of transferring each element, without interpretation or modification, except in
the case of strings. Each IDL data type, except strings, has a fixed length expressed in
bytes. This length (which is padded when using ASSOC, but not padded when using
READU/WRITEU) is also the number of bytes read or written for each element.

All instances of structures contain an even number of bytes. On machines whose
native C compilers force short integers to begin on an even byte boundary, IDL
begins fields that are not of type byte on an even byte boundary. Thus, a “padding
byte” may appear (when using ASSOC for I/O) after a byte field to cause the
following non-byte-type field to begin on an even byte. A padding byte is never
added before a byte or byte array field. For example, the structure:

{example, t1:1b, t2:1}
Structure Input/Output Building IDL Applications



Chapter 6: Structures 111
occupies four bytes on a machine where short integers must begin on an even byte
boundary. When using ASSOC, a padding byte is added after field t1 to cause the
integer field t2 to begin on an even-byte boundary.

Strings

Strings are exceptions to the above rules because the length of strings within
structures is not fixed. For example, one instance of the {star} structure can
contain a name field with a five-character name, while another instance of the same
structure can contain a 20-character name. When reading into a structure field that
contains a string, IDL reads the number of bytes given by the length of the string. If
the string field contains a 10-character string, 10 characters are read. If the data read
contains a null byte, the length of the string field is truncated, and the null and
following characters are discarded. When writing fields containing strings with the
unformatted procedure WRITEU, IDL writes each character of the string and does
not append a terminating null byte.

String Length Issues

When reading or writing structures containing strings with READU and WRITEU,
make each string in a given field the same length to be compatible with C and to be
able to read the data back into IDL. You must know how many characters exist to
read into a string element. One way around this problem is using the STRING
function with a format specification that sets the length of all elements to some
maximum number. For example, it is easy to set the length of all name fields in the
cat array to 20 characters by using the following statement.

cat.name = STRING(cat.name, FORMAT = '(A20)')

This statement will truncate names longer than 20 characters and will pad with blanks
those names shorter than 20 characters. The structure or structure array then can be
output in a format suitable to be read by C or FORTRAN programs. For example, to
read into the cat array from a file in which each name field occupies 26 bytes, use
the following statements.

;Make a 100-element array of {STAR} structures, storing a
;26-character string in each name field.
cat = REPLICATE({star, STRING(' ', FORMAT = '(A26)'), $

FLTARR(0., 0.12)}, 100)

;Read the structure. As mentioned above, 26 bytes will be read for
;each name field. The presence of a null byte in the file will
;truncate the field to the correct number of bytes.
READU, 1, cat
Building IDL Applications Structure Input/Output



112 Chapter 6: Structures
Advanced Structure Usage

Facilities exist to process structures in a general way using tag numbers rather than
tag names. A tag can be referenced using its index, enclosed in parentheses, as
follows:

Variable_Name.(Tag_Index)... ... ...

The Tag_Index ranges from zero to the number of fields minus one.

Note
The Tag_Index is an expression, the result of which is taken to be a tag position. In
order for the IDL parser to understand that this is the case, you must enclose the
Tag_Index in parentheses. This is not an array indexing operation, so the use of
square brackets ([]) is not allowed in this context.

Number of Structure Tags

The function N_TAGS(Structure) returns the number of fields in a structure. To
obtain the size, in bytes, of a structure call N_TAGS with the /LENGTH keyword.

Names of Structure Tags

The function TAG_NAMES(Structure) returns a string array containing the names of
each tag. To return the name of the structure itself, call TAG_NAMES with the
/STRUCTURE_NAME keyword.

Example

Using tag indices and the above-mentioned functions, we specify a procedure that
reads into a structure from the keyboard. The procedure prompts the user with the
type, structure, and tag name of each field within the structure.

;A procedure to read into a structure, S, from the keyboard with
;prompts.
PRO READ_STRUCTURE, S

;Get the names of the tags.
NAMES = TAG_NAMES(S)
;Loop for each field.
FOR I = 0, N_TAGS(S) - 1 DO BEGIN

;Define variable A of same type and structure as the i-th field.
A = S.(I)
Advanced Structure Usage Building IDL Applications



Chapter 6: Structures 113
;Use HELP to print the attributes of the field. Prompt user with
;tag name of this field, and then read into variable A. S.(I) =
;A. Store back into structure from A.
HELP, S.(I)

READ, 'Enter Value For Field ', NAMES[I], ': ', A
S.(I) = A

ENDFOR
END

Note
In the above procedure, the READ procedure reads into the variable A rather than
S.(I) because S.(I) is an expression, not a simple variable reference.
Expressions are passed by value; variables are passed by reference. The READ
procedure prompts the user with parameters passed by value and reads into
parameters passed by reference.
Building IDL Applications Advanced Structure Usage



114 Chapter 6: Structures
Automatic Structure Definition

In versions of IDL prior to version 5, references to an undefined named structure
would cause IDL to halt with an error. This behavior was changed in IDL version 5 to
allow the automatic definition of named structures.

When IDL encounters a reference to an undefined named structure, it will
automatically search the directories specified in !PATH for a procedure named
Name__DEFINE, where Name is the actual name of the structure. If this procedure is
found, IDL will call it, giving it the opportunity to define the structure. If the
procedure does in fact define the named structure, IDL will proceed with the desired
operation.

Note
There are two underscores in the name of the structure definition procedure.

For example, suppose that a structure named mystruct has not been defined, and that
no procedure named mystruct__define.pro exists in the directories specified by
!PATH. A call to the HELP procedure produces the following output:

HELP, { mystruct }, /STRUCTURE

IDL prints:

% Attempt to call undefined procedure/function:'MYSTRUCT__DEFINE'.
% Structure type not defined: MYSTRUCT.
% Execution halted at:  $MAIN$

Suppose now that we define a procedure named mystruct__define.pro as follows, and
place it in one of the directories specified by !PATH:

PRO mystruct__define
tmp = { mystruct, a:1.0, b:'string' }

END

With this structure definition routine available, the call to HELP produces the
following output:

HELP, { mystruct }, /STRUCTURE

IDL prints:

% Compiled module: MYSTRUCT__DEFINE.
** Structure MYSTRUCT, 2 tags, length=12:
   A               FLOAT           0.00000
   B               STRING ''
Automatic Structure Definition Building IDL Applications



Chapter 6: Structures 115
Remember that the fields of a structure created by copying a named structure
definition are filled with zeroes or null strings. Any structure created in this way—
either via automatic structure definition or by explicitly creating a new structure from
an existing structure—must be initialized to contain values after creation.
Building IDL Applications Automatic Structure Definition



116 Chapter 6: Structures
Relaxed Structure Assignment

The IDL “=” operator is unable to assign a structure value to a structure with a
different definition. For example, suppose we have an existing structure definition
SRC, as follows:

source = { SRC, A:FINDGEN(4), B:12 }

and we wish to create a second instance of the same structure, but with slightly
different data and a different field:

dest = { SRC, A:INDGEN(2), C:20 }

Attempting to execute these two statements at the IDL command prompt gives the
following results:

% Conflicting data structures: <INT       Array[2]>,SRC.
% Execution halted at:  $MAIN$

Versions of IDL beginning with IDL 5.1 include a mechanism to solve this problem.
The STRUCT_ASSIGN procedure performs “relaxed structure assignment,” which
is a field-by-field copy of a structure to another structure. Fields are copied according
to the following rules:

1. Any fields found in the destination structure that are not found in the source
structure are “zeroed” (set to zero, the empty string, or a null pointer or object
reference depending on the type of field).

2. Any fields in the source structure that are not found in the destination structure
are quietly ignored.

3. Any fields that are found in both the source and destination structures are
copied one at a time. If necessary, type conversion is done to make their types
agree. If a field in the source structure has fewer data elements than the
corresponding field in the destination structure, then the “extra” elements in
the field in the destination structure are zeroed. If a field in the source structure
has more elements than the corresponding field in the destination structure, the
extra elements are quietly ignored.

Using STRUCT_ASSIGN, we can make the assignment that failed using the =
operator:

source = { src, a:FINDGEN(4), b:12 }
dest = { dest, a:INDGEN(2), c:20 }
STRUCT_ASSIGN, source, dest, /VERBOSE
Relaxed Structure Assignment Building IDL Applications



Chapter 6: Structures 117
IDL prints:

% STRUCT_ASSIGN: SRC tag A is longer than destination.
The end will be clipped.

% STRUCT_ASSIGN: Destination lacks SRC tag B. Not copied.

If we check the variable dest, we see that it has the definition of the dest structure
and the data from the source structure:

HELP, dest, /STRUCTURE

IDL prints:

** Structure DEST, 2 tags, length=6:
   A               INT       Array[2]
   C               INT              0

Using Relaxed Structure Assignment

Why would you want to use Relaxed Structure Assignment? One case where this
type of structure definition is very useful is in restoring object structures into an
environment where the structure definition may have changed since the restored
objects were saved.

Suppose you have created an application that saves data in structures. Your
application may use the IDL SAVE routine to save the data structures to disk files. If
you later change your application such that the definition of the data structures
changes, you would not be able to restore your saved data into your application’s
framework without relaxed structure assignment. The
RELAXED_STRUCTURE_ASSIGNMENT keyword to the RESTORE procedure
allows you to make relaxed assignments in such cases.

To see how this works, try the following exercise:

1. Start IDL, create a named structure, and use the SAVE procedure to save it to a
file:

mystruct = { STR, A:10, B:20L, C:'a string' }
SAVE, mystruct, FILE='test.dat'

2. Exit and restart IDL.

3. Create a new structure definition with the same name you used previously:

newstruct = { STR, A:20L, B:10.0, C:'a string', D:ptr_new() }

4. Attempt to restore the variable mystruct from the test.dat file:

RESTORE, 'test.dat'
Building IDL Applications Relaxed Structure Assignment



118 Chapter 6: Structures
IDL prints:

% Wrong number of tags defined for structure: STR.
% RESTORE: Structure not restored due to conflict with

existing definition: STR.

5. Now use relaxed structure definition when restoring:

RESTORE, 'test.dat', /RELAXED_STRUCTURE_ASSIGNMENT

6. Check the contents of mystruct:

HELP, mystruct, /STRUCTURE

IDL prints:

** Structure STR, 4 tags, length=20:
   A               LONG                10
   B               FLOAT           20.0000
   C               STRING    'a string'
   D               POINTER   <NullPointer>

The structure in the variable mystruct now uses the definition from the new version
of the STR structure, but contains the data from the old (restored) structure. In cases
where the data type of a field has changed, the data type of the old data element has
been converted to the new data type. Fields in the new structure definition that do not
correspond to fields in the old definition contain “zero” values (zeroes for numeric
fields, empty strings for string fields, null pointer or references for pointer or
reference fields).
Relaxed Structure Assignment Building IDL Applications



Chapter 7:

Pointers
The following topics are covered in this chapter:
Overview . . . . . . . . . . . . . . . . . . . . . . . . . .  120
Heap Variables  . . . . . . . . . . . . . . . . . . . . .  121
Creating Heap Variables . . . . . . . . . . . . . .  123
Saving and Restoring Heap Variables . . . .  124
Pointer Heap Variables  . . . . . . . . . . . . . . .  125
IDL Pointers  . . . . . . . . . . . . . . . . . . . . . . .  126

Operations on Pointers . . . . . . . . . . . . . . . . 129
Dangling References  . . . . . . . . . . . . . . . . . 133
Heap Variable Leakage  . . . . . . . . . . . . . . . 134
Pointer Validity  . . . . . . . . . . . . . . . . . . . . . 136
Freeing Pointers . . . . . . . . . . . . . . . . . . . . . 137
Pointer Examples . . . . . . . . . . . . . . . . . . . . 138
Building IDL Applications 119



120 Chapter 7: Pointers
Overview

In order to build linked lists, trees, and other dynamic data structures, it must be
possible to access variables via lightweight references that may have more than one
name. Further, these names might have different lifetimes, so the lifetime of the
variable that actually holds the data must be separate from the lifetime of the tokens
that are used to access it.

Beginning with IDL version 5, IDL includes a new pointer data type to facilitate the
construction of dynamic data structures. Although there are similarities between IDL
pointers and machine pointers as implemented in languages such as C, it is important
to understand that they are not the same thing. IDL pointers are a high level IDL
language concept and do not have a direct one-to-one mapping to physical hardware.
Rather than pointing at locations in computer memory, IDL pointers point at heap
variables, which are special dynamically allocated IDL variables. Heap variables are
global in scope, and exist until explicitly destroyed.

Running the Example Code

The example code used in this chapter is part of the IDL distribution. All of the files
mentioned are located in the examples/doc subdirectory of the IDL distribution.
By default, this directory is part of IDL’s path; if you have not changed your path,
you will be able to run the examples as described here. See !PATH in the IDL
Reference Guide for information on IDL’s path.
Overview Building IDL Applications



Chapter 7: Pointers 121
Heap Variables

Heap variables are a special class of IDL variables that have global scope and explicit
user control over their lifetime. They can be basic IDL variables, accessible via
pointers, or objects, accessible via object references. (See Chapter 20, “Object
Basics” for more information on IDL objects.) In IDL documentation of pointers and
objects, heap variables accessible via pointers are called pointer heap variables, and
heap variables accessible via object references are called object heap variables.

Note
Pointers and object references have many similarities, the strongest of which is that
both point at heap variables. It is important to understand that they are not the same
type, and cannot be used interchangeably. Pointers and object references are used to
solve different sorts of problems. Pointers are useful for building dynamic data
structures, and for passing large data around using a lightweight token (the pointer
itself) instead of copying data. Objects are used to apply object oriented design
techniques and organization to a system. It is, of course, often useful to use both in
a given program.

Heap variables are global in scope, but do not suffer from the limitations of
COMMON blocks. That is, heap variables are available to all program units at all
times. (Remember, however, that IDL variables containing pointers to heap variables
are not global in scope and must be declared in a COMMON block if you want to
share them between program units.)

Heap variables:

• Facilitate object oriented programming.

• Provide full support for Save and Restore. Saving a pointer or object reference
automatically causes the associated heap variable to be saved as well. This
means that if the heap variable contains a pointer or object reference, the heap
variables they point to are also saved. Complicated self-referential data
structures can be saved and restored easily.

• Are manipulated primarily via pointers or object references using built in
language operators rather than special functions and procedures.

• Can be used to construct arbitrary, fully general data structures in conjunction
with pointers.
Building IDL Applications Heap Variables



122 Chapter 7: Pointers
Note
If you have used versions of IDL prior to version 5, you may be familiar with
handles. Because IDL pointers provide a more complete and robust way of building
dynamic data structures, Research Systems recommends that you use pointers
rather than handles when developing new code. See Appendix I, “Obsolete
Routines” in the IDL Reference Guide for a discussion of Research Systems’ policy
on language features that have been superseded in this manner.
Heap Variables Building IDL Applications



Chapter 7: Pointers 123
Creating Heap Variables

Heap variables can be created only by the pointer creation function PTR_NEW or the
object creation function OBJ_NEW. (See Chapter 20, “Object Basics” for a
discussion of object creation.) Copying a pointer or object reference does not create a
new heap variable. This is markedly different from the way IDL handles “regular”
variables. For example, with the statement:

A = 1.0

you create a new IDL floating-point variable with a value of 1.0. The following
statement:

B = A

creates a second variable with the same type and value as A.

In contrast, if you create a new heap variable with the following command:

C = PTR_NEW(2.0d)

the variable C contains not the double-precision floating-point value 2.0, but a
pointer to a heap variable that contains that value. Copying the variable C with the
following statement:

D = C

does not create another heap variable, but rather creates a second pointer to the same
heap variable. In this example, the HELP command would reveal:

% At  $MAIN$
A               FLOAT     =       1.00000
B               FLOAT     =       1.00000
C               POINTER   = <PtrHeapVar1>
D               POINTER   = <PtrHeapVar1>

The variables C and D are both pointers to the same heap variable. (The actual name
assigned to a heap variable is arbitrary.) Changing the value stored in the heap
variable would be reflected when dereferencing either C or D (dereferencing is
discussed in “Dereference” on page 129).

Destroying or redefining either C, D, or both variables would leave the contents of
the heap variable unchanged. When all pointers or references to a given heap variable
are destroyed, the heap variable still exists and holds whatever memory has been
allocated for it. See “Heap Variable Leakage” on page 134 for further discussion. If
the heap variable itself is destroyed, pointers to the heap variable may still exist, but
will be invalid. See “Dangling References” on page 133.
Building IDL Applications Creating Heap Variables



124 Chapter 7: Pointers
Saving and Restoring Heap Variables

The SAVE and RESTORE procedures work for heap variables just as they work for
all other supported types. When IDL saves a pointer or object reference in a save file,
it recursively saves the heap variables that are referenced by that pointer or object
reference. SAVE handles circular data structures correctly. You can build a large,
complicated, self-referential data structure, and then save the entire construct with a
call to SAVE to save the single pointer or object reference that points to the head of
the structure. For example, you can save a pointer to the root of a binary tree and the
entire tree will be saved.

The internal identifier of a given heap variable is dynamically allocated at run time,
and will differ between IDL sessions. As a result, the RESTORE operation maps all
saved pointers and object references to their new values in the current session.
Saving and Restoring Heap Variables Building IDL Applications



Chapter 7: Pointers 125
Pointer Heap Variables

Pointer heap variables are IDL heap variables that are accessible only via pointers.
While there are many similarities between object references and pointers, it is
important to understand that they are not the same type, and cannot be used
interchangeably. Pointer heap variables are created using the PTR_NEW and
PTRARR functions. For more information on objects, see Chapter 20, “Object
Basics”.
Building IDL Applications Pointer Heap Variables



126 Chapter 7: Pointers
IDL Pointers

As illustrated above, you must use a special IDL routine to create a pointer to a heap
variable. Two routines are available: PTR_NEW and PTRARR. Before discussing
these functions, however, it is useful to examine the concept of a null pointer.

Null Pointers

The Null Pointer is a special pointer value that is guaranteed to never point at a valid
heap variable. It is used by IDL to initialize pointer variables when no other
initializing value is present. It is also a convenient value to use at the end nodes in
data structures such as trees and linked lists.

It is important to understand the difference between a null pointer and a pointer to an
undefined or invalid heap variable. The second case is a valid pointer to a heap
variable that does not currently contain a usable value. To make the difference clear,
consider the following IDL statements:

;The variable A contains a null pointer.
A = PTR_NEW()
;The variable B contains a pointer to a heap variable with an
;undefined value.
B = PTR_NEW(/ALLOCATE_HEAP)

HELP, A, B, *B

IDL prints:

A               POINTER  = <NullPointer>
B               POINTER  = <PtrHeapVar1>
<PtrHeapVar1>   UNDEFINED = <Undefined>

The primary difference is that it is possible to write a useful value into a pointer to an
undefined variable, but this is never possible with a null pointer. For example,
attempt to assign the value 34 to the null pointer:

*A = 34

IDL prints:

% Unable to dereference NULL pointer: A.
% Execution halted at:  $MAIN$

Assign the value 34 to a previously-undefined heap variable:

*B = 34
PRINT, *B
IDL Pointers Building IDL Applications



Chapter 7: Pointers 127
IDL prints:

      34

Similarly, the null pointer is not the same thing as the result of PTR_NEW(0).
PTR_NEW(0) returns a pointer to a heap variable that has been initialized with the
integer value 0.

The PTR_NEW Function

Use the PTR_NEW function to create a single pointer to a new heap variable. If you
supply an argument, the newly-created heap variable is set to the value of the
argument. For example, the command:

ptr1 = PTR_NEW(FINDGEN(10))

creates a new heap variable that contains the ten-element floating point array created
by FINDGEN, and places a pointer to this heap variable in ptr1.

Note that the argument to PTR_NEW can be of any IDL data type, and can include
any IDL expression, including calls to PTR_NEW itself. For example, the command:

ptr2 = PTR_NEW({name:'', next:PTR_NEW()})

creates a pointer to a heap variable that contains an anonymous structure with two
fields: the first field is a string, the second is a pointer. We will develop this idea
further in the examples at the end of this chapter.

If you do not supply an argument, the newly-created pointer will be a null pointer. If
you wish to create a new heap variable but do not wish to initialize it, use the
ALLOCATE_HEAP keyword.

See PTR_NEW in the IDL Reference Guide for further details.

The PTRARR Function

Use the PTRARR function to create an array of pointers of up to eight dimensions.
By default, every element of the array created by PTRARR is set to the null pointer.
For example:

;Create a 2 by 2 array of null pointers.
ptarray = PTRARR(2,2)

;Display the contents of the ptarray variable, and of the first
;array element.
HELP, ptarray, ptarray(0,0)
Building IDL Applications IDL Pointers



128 Chapter 7: Pointers
IDL prints:

PTARR           POINTER   = Array(2, 2)
<Expression>    POINTER   = <NullPointer>

If you want each element of the array to point to a new heap variable (as opposed to
being a null pointer), use the ALLOCATE_HEAP keyword. Note that in either case,
you will need to initialize the array with another IDL statement.

See PTRARR in the IDL Reference Guide for further details.
IDL Pointers Building IDL Applications



Chapter 7: Pointers 129
Operations on Pointers

Pointer variables are not directly usable by many of the operators, functions, or
procedures provided by IDL. You cannot, for example, do arithmetic on them or plot
them. You can, of course, do these things with the heap variables referenced by such
pointers, assuming that they contain appropriate data for the task at hand. Pointers
exist to allow the construction of dynamic data structures that have lifetimes that are
independent of the program scope they are created in.

There are 4 IDL operators that work with pointer variables: assignment, dereference,
EQ, and NE. The remaining operators (addition, subtraction, etc.) do not make any
sense for pointer types and are not defined.

Many non-computational functions and procedures in IDL do work with pointer
variables. Examples are SIZE, N_ELEMENTS, HELP, and PRINT. It is worth noting
that the only I/O allowed directly on pointer variables is default formatted output,
where they are printed as a symbolic description of the heap variable they point at.
This is merely a debugging aid for the IDL programmer—input/output of pointers
does not make sense in general and is not allowed. Please note that this does not
imply that I/O on the contents of non-pointer data held in heap variables is not
allowed. Passing the contents of a heap variable that contains non-pointer data to the
PRINT command is a simple example of this type of I/O.

Assignment

Assignment works in the expected manner—assigning a pointer to a variable gives
you another variable with the same pointer. Hence, after executing the statements:

A = PTR_NEW(FINDGEN(10))
B = A
HELP, A, B

A and B both point at the same heap variable and we see the output:

A               POINTER  = <PtrHeapVar1>
B               POINTER  = <PtrHeapVar1>

Dereference

In order to get at the contents of a heap variable referenced by a pointer variable, you
must use the dereference operator, which is * (the asterisk). The dereference operator
precedes the variable dereferenced. For example, if you have entered the above
assignments of the variables A and B:
Building IDL Applications Operations on Pointers



130 Chapter 7: Pointers
PRINT, *B

IDL prints:

0.00000 1.00000 2.00000 3.00000 4.00000 5.00000
6.00000 7.00000 8.00000 9.00000

That is, IDL prints the contents of the heap variable pointed at by the pointer variable
B.

Dereferencing Pointer Arrays

Note that the dereference operator requires a scalar pointer operand. This means that
if you are dealing with a pointer array, you must specify which element to
dereference. For example, create a three-element pointer array, allocating a new heap
variable for each element:

ptarr = PTRARR(3, /ALLOCATE_HEAP)

To initialize this array such that the heap variable pointed at by the first pointer
contains the integer zero, the second the integer one, and the third the integer two,
you would use the following statement:

FOR I = 0,2 DO *ptarr[I] = I

Note
The dereference operator is dereferencing only element I of the array for each
iteration. Similarly, if you wanted to print the values of the heap variables pointed
at by the pointers in ptarr, you might be tempted to try the following:

PRINT, *ptarr

IDL prints:

% Expression must be a scalar in this context: PTARR.
% Execution halted at:  $MAIN$

To print the contents of the heap variables, use the statement:

FOR I = 0, N_ELEMENTS(ptarr)-1 DO PRINT, *ptarr[I]

Dereferencing Pointers to Pointers

The dereference operator can be applied as many times as necessary to access data
pointed at indirectly via multiple pointers. For example, the statement:

A = PTR_NEW(PTR_NEW(47))
Operations on Pointers Building IDL Applications



Chapter 7: Pointers 131
assigns to A a pointer to a pointer to a heap variable containing the value 47.

To print this value, use the following statement:

PRINT, **A

Dereferencing Pointers within Structures

If you have a structure field that contains a pointer, dereference the pointer by
prepending the dereference operator to the front of the structure name. For example,
if you define the following structure:

struct = {data:'10.0', pointer:ptr_new(20.0)}

you would use the following command to print the value of the heap variable pointed
at by the pointer in the pointer field:

PRINT, *struct.pointer

Defining pointers to structures is another common practice. For example, if you
define the following pointer:

ptstruct = PTR_NEW(struct)

you would use the following command to print the value of the heap variable pointed
at by the pointer field of the struct structure, which is pointed at by ptstruct:

PRINT, *(*pstruct).pointer

Note that you must dereference both the pointer to the structure and the pointer
within the structure.

Dereferencing the Null Pointer

It is an error to dereference the NULL pointer, an invalid pointer, or a non-pointer.
These cases all generate errors that stop IDL execution. For example:

PRINT, *45

IDL prints:

% Pointer type required in this context: <INT(      45)>.
% Execution halted at:  $MAIN$

For example:

A = PTR_NEW() & PRINT, *A

IDL prints:

% Unable to dereference NULL pointer: A.
% Execution halted at:  $MAIN$
Building IDL Applications Operations on Pointers



132 Chapter 7: Pointers
For example:

A = PTR_NEW(23) & PTR_FREE, A & PRINT, *A

IDL prints:

% Invalid pointer: A.

% Execution halted at:  $MAIN$

Equality and Inequality

The EQ and NE operators allow you to compare pointers to see if they point at the
same heap variable. For example:

;Make A a pointer to a heap variable containing 23.
A = PTR_NEW(23)

;B points at the same heap variable as A.
B = A

;C contains the null pointer.
C = PTR_NEW()

PRINT, 'A EQ B: ', A EQ B & $
PRINT, 'A NE B: ', A NE B & $
PRINT, 'A EQ C: ', A EQ C & $
PRINT, 'C EQ NULL: ', C EQ PTR_NEW() & $
PRINT, 'C NE NULL:', C NE PTR_NEW()

IDL prints:

A EQ B: 1
A NE B: 0
A EQ C: 0
C EQ NULL: 1
C NE NULL: 0
Operations on Pointers Building IDL Applications



Chapter 7: Pointers 133
Dangling References

If a heap variable is destroyed, any remaining pointer variable or object reference that
still refers to it is said to contain a dangling reference. Unlike lower level languages
such as C, dereferencing a dangling reference will not crash or corrupt your IDL
session. It will, however, fail with an error message. For example:

;Create a new heap variable.
A = PTR_NEW(23)

;Print A and the value of the heap variable A points to.
PRINT, A, *A

IDL prints:

<PtrHeapVar13>      23

For example:

;Destroy the heap variable.
PTR_FREE, A

;Try to print again.
PRINT, A, *A

IDL prints:

% Invalid pointer: A.
% Execution halted at:  $MAIN$

There are several possible approaches to avoiding such errors. The best option is to
structure your code such that dangling references do not occur. You can, however,
verify the validity of pointers or object references before using them (via the
PTR_VALID or OBJ_VALID functions) or use the CATCH mechanism to recover
from the effect of such a dereference.
Building IDL Applications Dangling References



134 Chapter 7: Pointers
Heap Variable Leakage

Heap variables are not reference counted—that is, IDL does not keep track of how
many references to a heap variable exist, or stop the last such reference from being
destroyed—so it is possible to lose access to them and the memory they are using.
For example:

;Create a new heap variable.
A = PTR_NEW(23)

;Set the pointer A equal to the integer zero. The pointer to the
;heap variable created with the first command is lost.
A = 0

Use the HEAP_VARIABLES keyword to the HELP procedure to view a list of heap
variables currently in memory:

HELP, /HEAP_VARIABLES

IDL prints:

<PtrHeapVar14>  INT       =       23

In this case, the heap variable <PtrHeapVar14> exists and has a value of 23, but there
is no way to reference the variable. There are two options: manually create a new
pointer to the existing heap variable using the PTR_VALID function (see
PTR_VALID in the IDL Reference Guide), or do manual “Garbage Collection” and
use the HEAP_GC command to destroy all inaccessible heap variables.

Warning
Object reference heap variables are subject to the same problems as pointer heap
variables. See OBJ_VALID in the IDL Reference Guide for more information.

The HEAP_GC procedure causes IDL to hunt for all unreferenced heap variables and
destroy them. It is important to understand that this is a potentially computationally
expensive operation, and should not be relied on by programmers as a way to avoid
writing careful code. Rather, the intent is to provide programmers with a debugging
aid when attempting to track down heap variable leakage. In conjunction with the
VERBOSE keyword, HEAP_GC makes it possible to determine when variables have
leaked, and it provides some hint as to their origin.
Heap Variable Leakage Building IDL Applications



Chapter 7: Pointers 135
Warning
HEAP_GC uses a recursive algorithm to search for unreferenced heap variables. If
HEAP_GC is used to manage certain data structures, such as large linked lists, a
potentially large number of operations may be pushed onto the system stack. If so
many operations are pushed that the stack runs out of room, IDL will crash.

General reference counting, the usual solution to such leaking, is too slow to be
provided automatically by IDL, and careful programming can easily avoid this
pitfall. Furthermore, implementing a reference counted data structure on top of IDL
pointers is easy to do in those cases where it is useful, and such reference counting
could take advantage of its domain specific knowledge to do the job much faster than
the general case.

Another approach would be to write allocation and freeing routines—layered on top
of the PTR_NEW and PTR_FREE routines—that keep track of all outstanding
pointer allocations. Such routines might make use of pointers themselves to keep
track of the allocated pointers. Such a facility could offer the ability to allocate
pointers in named groups, and might provide a routine that frees all heap variables in
a given group. Such an operation would be very efficient, and is easier than reference
counting.
Building IDL Applications Heap Variable Leakage



136 Chapter 7: Pointers
Pointer Validity

Use the PTR_VALID function to verify that one or more pointer variables point to
valid and currently existing heap variables, or to create an array of pointers to
existing heap variables. If supplied with a single pointer as its argument,
PTR_VALID returns TRUE (1) if the pointer argument points at a valid heap
variable, or FALSE (0) otherwise. If supplied with an array of pointers, PTR_VALID
returns an array of TRUE and FALSE values corresponding to the input array. If no
argument is specified, PTR_VALID returns an array of pointers to all existing pointer
heap variables. For example:

;Create a new pointer and heap variable.
A = PTR_NEW(10)

IF PTR_VALID(A) THEN PRINT, "A points to a valid heap variable." $
ELSE PRINT, "A does not point to a valid heap variable."

IDL prints:

A points to a valid heap variable.

For example:

;Destroy the heap variable.
PTR_FREE, A

IF PTR_VALID(A) THEN PRINT, "A points to a valid heap variable." $
ELSE PRINT, "A does not point to a valid heap variable."

IDL prints:

A does not point to a valid heap variable.

See PTR_VALID in the IDL Reference Guide for further details.
Pointer Validity Building IDL Applications



Chapter 7: Pointers 137
Freeing Pointers

The PTR_FREE procedure destroys the heap variables pointed at by pointers
supplied as its arguments. Any memory used by the heap variable is released, and the
heap variable ceases to exist. PTR_FREE is the only way to destroy a pointer heap
variable; if PTR_FREE is not called on a heap variable, it continues to exist until the
IDL session ends, even if no pointers remain to reference it.

Note that the pointers themselves are not destroyed. Pointers that point to nonexistent
heap variables are known as dangling references, and are discussed in more detail in
“Dangling References” on page 133.

See PTR_FREE in the IDL Reference Guide for further details.
Building IDL Applications Freeing Pointers



138 Chapter 7: Pointers
Pointer Examples

Pointers are useful in building dynamic memory structures, such as linked lists and
trees. The following examples demonstrate how pointers are used to build several
types of dynamic structures. Note that the purpose of these examples is to illustrate
simply and clearly how pointers are used. As such, they may not represent the “best”
or most efficient way to accomplish a given task. Readers interested in learning more
about efficient use of data structures are urged to consult any good text on data
structures.

Creating a Linked List

The following example uses pointers to create and manipulate a linked list. One
procedure reads string input from the keyboard and creates a list of pointers to heap
variables that have the strings as their values. Another procedure prints the strings,
given the pointer to the beginning of the linked list. A third procedure uses a modified
“bubble sort” algorithm to reorder the values so the strings are in alphabetical order.

Creating the List

The following program prompts the user to enter a series of strings from the
keyboard. After reading each string, it creates a new heap variable containing a list
element—an anonymous structure with two fields; one to hold the string data and one
to hold a pointer to the next list element. Any number of strings can be entered. When
the user is finished entering strings, the program can be exited by entering a period by
itself at the “Enter string:” prompt.

The text of the program shown below can be found in the file ptr_read.pro in the
examples/doc subdirectory of the IDL distribution.

;PTR_READ accepts one argument, a named variable in which to return
;the pointer that points at the beginning of the list.
PRO ptr_read, first

;Initialize the input string variable.
newstring = ''

;Create an anonymous structure to contain list elements. Note that
;the next field is initialized to be a null pointer.
llist = {name:'', next:PTR_NEW()}

;Print instructions for this program.
PRINT, 'Enter a list of names.'
PRINT, 'Enter a period (.) to stop list entry.'
Pointer Examples Building IDL Applications



Chapter 7: Pointers 139
;Continue accepting input until a period is entered.
WHILE newstring NE "." DO BEGIN

READ, newstring, PROMPT='Enter string: '
;Read a new string from the keyboard.

;Check to see if a pointer called first exists. If not, this is
;the first element. Create a pointer called first and initialize
;it to be a list element. Create a second pointer to the heap
;variable pointed at by first.

IF newstring NE '.' THEN BEGIN
IF NOT(PTR_VALID(first)) THEN BEGIN

first = PTR_NEW(llist)
current = first

ENDIF

;Create a pointer to the next list element.
next = PTR_NEW(llist)

;Set the name field of current to the input string.
(*current).name = newstring

;Set the next field of current to the pointer to the next list
;element.
(*current).next = next

;Store the "current" pointer as the "last" pointer.
last = current

;Make the "next" pointer the "current" pointer.
current = next

ENDIF
ENDWHILE

;Set the next field of the last element to the null pointer.
IF PTR_VALID(last) THEN (*last).next = PTR_NEW()

;End of PTR_READ program.
END

Run the PTR_READ program by entering the following command at the IDL
prompt:

ptr_read, first

Type a string, press Return, and the program prompts for another string. You can
enter as many strings as you want. Each time a string is entered, PTR_READ creates
Building IDL Applications Pointer Examples



140 Chapter 7: Pointers
a new list element with that string as its value. For example, you could enter the
following three strings (used in the rest of this example):

Enter a list of names.
Enter a period (.) to stop list entry.
Enter string: wilma
Enter string: biff
Enter string: cosmo
Enter string: .

The following figure shows one way of visualizing the linked list that we’ve created.

Printing the Linked List

The next program in our example accepts the pointer to the first element of the linked
list and prints all the values in the list in order. To illustrate how the list is linked, we
will also print the name of the heap variable that contains each element, and the name
of the heap variable in the next field of that element.

The text of the program shown below can be found in the file ptr_print.pro in the
examples/doc subdirectory of the IDL distribution.

;PTR_PRINT accepts one argument, a pointer to the first element of
;a linked list returned by PTR_READ. Note that the PTR_PRINT
;program does not need to know how many elements are in the list,
;nor does it need to explicitly know of any pointer other than the
;first.
PRO ptr_print, first

;Create a second pointer to the heap variable pointed at by first.
current = first

;PTR_VALID returns 0 if its argument is not a valid pointer. Note
;that the null pointer is not a valid pointer.
WHILE PTR_VALID(current) DO BEGIN

;Print the list element information.
PRINT, current, ', named ', (*current).name, $

Table 7-1: One way of visualizing the linked list created by the PTR_READ
procedure

name:
wilma

next: name:
biff

next: name:
cosmo

next:
nullfirst:
Pointer Examples Building IDL Applications



Chapter 7: Pointers 141
', has a pointer to: ', (*current).next

;Set current equal to the pointer in its own next field.
current = (*current).next

ENDWHILE

;End of PTR_PRINT program.
END

If we run the PTR_PRINT program with the list generated in the previous example:

IDL> ptr_print, first

IDL prints:

<PtrHeapVar1>, named wilma, has a pointer to: <PtrHeapVar2>
<PtrHeapVar2>, named biff, has a pointer to: <PtrHeapVar3>
<PtrHeapVar3>, named cosmo, has a pointer to: <NullPointer>

A Simple Sorting Routine for the Linked List

The next example program takes a list generated by PTR_READ and moves the
values so that they are in alphabetical order. The sorting algorithm used in this
program is a variation on the classic “bubble sort”. However, instead of starting with
the last element in the list and letting lower values “rise” to the top, this example
starts at the top of the list and lets higher (“heavier”) values “sink” to the bottom of
the list. Note that this is not a very efficient sorting algorithm and is shown as an
illustration because of its simplicity. For real sorting applications, use IDL’s SORT
function.

The text of the program shown below can be found in the file ptr_sort.pro in the
examples/doc subdirectory of the IDL distribution.

;PTR_SORT accepts one argument, a pointer to the first element of a
;linked list returned by PTR_READ. Note that the PTR_SORT program
;does not need to know how many elements are in the list, nor does
;it need to explicitly know of any pointer other than the first.
pro ptr_sort, first

;Initialize swap flag.
swap = 1

;Create an anonymous structure to contain list elements. Note that
;the next field is initialized to be a pointer.
llist = {name:'', next:PTR_NEW()}

;Create a pointer to this structure, to be used as "swap space."
junk = ptr_new(llist)
Building IDL Applications Pointer Examples



142 Chapter 7: Pointers
;Continue the sorting until no swaps are made. If no adjacent
;elements need to be swapped, the list is in alphabetical order.
WHILE swap NE 0 DO BEGIN

;Create a second pointer to the heap variable pointed at by
;first.
current = first

;Create another pointer to the heap variable held in the next
;field of current.
next = (*current).next

;Set swap flag.
swap = 0

;Continue the sorting until next is no longer a valid pointer.
;Note that the null pointer is not a valid pointer.
WHILE PTR_VALID(next) DO BEGIN

;Get values to compare.
value1 = (*current).name
value2 = (*next).name

;Compare values and exchange if first is greater than second.
IF (value1 GT value2) THEN BEGIN

;Use the "swap space" pointer to exchange the name fields of
;current and next.
(*junk).name = (*current).name
(*current).name = (*next).name
(*next).name = (*junk).name

;Set current to next to advance through the list.
current = next

;Reset swap flag.
swap = 1

;If value1 is less than value2, set current to next to advance
;through the list.
ENDIF ELSE current = next

;Redefine next pointer.
next = (*current).next

ENDWHILE
ENDWHILE
END
Pointer Examples Building IDL Applications



Chapter 7: Pointers 143
To run the PTR_SORT routine with the list from our previous examples as input,
enter:

ptr_sort, first

We can see the results of the sorting by calling the PTR_PRINT routine again:

ptr_print, first

IDL prints:

<PtrHeapVar1>, named biff, has a pointer to: <PtrHeapVar2>
<PtrHeapVar2>, named cosmo, has a pointer to: <PtrHeapVar3>
<PtrHeapVar3>, named wilma, has a pointer to: <NullPointer>

and we see that now the names are in alphabetical order.

Example Files—Using Pointers to Create Binary Trees

Two more-complicated example programs demonstrate the use of IDL pointers to
create and search a simple tree structure. These files, named idl_tree.pro and
tree_example.pro, can be found in the examples/doc subdirectory of the IDL
distribution.

To run the tree examples, enter the following commands at the IDL prompt:

;Compile the routines in idl_tree. The example routine calls the
;routines defined in this file.
.run idl_tree

;Run the tree_example.
tree_example

The TREE_EXAMPLE and IDL_TREE routines create a binary tree with ten nodes
whose values are structures that contain random values for two fields, “Time” and
“Data”. The TREE_EXAMPLE routine then prints the tree sorted by both time and
data. It then searches for and deletes the nodes containing the fourth and second data
values. The resulting 8-node trees are again printed in both time and data order.

A detailed explication of the TREE_EXAMPLE and IDL_TREE routines is beyond
the scope of this chapter. Interested users should examine the files, starting with
tree_example.pro, to see how the trees are created and searched.
Building IDL Applications Pointer Examples



144 Chapter 7: Pointers
Pointer Examples Building IDL Applications



Chapter 8:

Files and
Input/Output

The following topics are covered in this chapter:
Overview . . . . . . . . . . . . . . . . . . . . . . . . . .  146
File I/O in IDL  . . . . . . . . . . . . . . . . . . . . .  147
Unformatted Input/Output  . . . . . . . . . . . .  152
Formatted Input/Output . . . . . . . . . . . . . . .  153
Opening Files  . . . . . . . . . . . . . . . . . . . . . .  155
Closing Files . . . . . . . . . . . . . . . . . . . . . . .  156
Logical Unit Numbers (LUNs) . . . . . . . . .  157
Reading and Writing Very Large Files . . .  160
Using Free Format Input/Output . . . . . . . .  162
Using Explicitly Formatted Input/Output .  167
Format Codes  . . . . . . . . . . . . . . . . . . . . . .  172

Using Unformatted Input/Output . . . . . . .  197
Portable Unformatted Input/Output . . . . .  204
Associated Input/Output  . . . . . . . . . . . . .  209
File Manipulation Operations  . . . . . . . . .  214
UNIX-Specific Information . . . . . . . . . . .  224
VMS-Specific Information  . . . . . . . . . . .  227
Windows-Specific Information  . . . . . . . .  237
Macintosh-Specific Information  . . . . . . .  238
Scientific Data Formats  . . . . . . . . . . . . . .  239
Support for Standard Image File Formats  240
Building IDL Applications 145



146 Chapter 8: Files and Input/Output
Overview

IDL provides powerful facilities for file input and output. Few restrictions are
imposed on data files by IDL, and there is no unique IDL format. This chapter
describes IDL input/output methods and routines and gives examples of programs
which read and write data using IDL, C, and FORTRAN.

The first section of this chapter provides a description for how IDL input/output
works. It is intentionally brief and is intended to serve only as an introduction.
Additional details are covered in the following sections. For the IDL user, perhaps
the largest single difference between platforms is input/output. The majority of this
chapter covers information that is required in all of the environments IDL supports.
Operating system specific information is concentrated in the final sections of this
chapter.
Overview Building IDL Applications



Chapter 8: Files and Input/Output 147
File I/O in IDL

Before any file input or output can be performed, it is necessary to open a file. This is
done using either the OPENR (Open for Reading), OPENW (Open for Writing), or
OPENU (Open for Update) procedures. When a file is opened, it is associated with a
Logical Unit Number, or LUN. All file input and output routines in IDL use the LUN
rather than the filename, and most require that the LUN be explicitly specified. Once
a file is opened, several input/output routines are available for use. Each routine fills
a particular need – the one to use depends on the particular situation.

There are three exceptions to the need to open any file before performing
input/output on it. Three files are always open – in fact, the user is not allowed to
close them. These files are the standard input (usually the keyboard), the standard
output (usually the IDL log window), and the standard error output (usually the
terminal screen). These three files are associated with LUNs 0, -1, and -2,
respectively. Because these files are always open, there is no need to open them prior
to using them for input/output. The READ and PRINT procedures automatically use
these files, so basic formatted input/output is extremely simple.

Simple Examples

It is easy to use input/output using the default input and output files. The IDL
command:

PRINT, 'Hello World.'

causes IDL to print the line:

Hello World.

on the terminal screen. This happens because PRINT formats its arguments and prints
them to LUN -1, which is the standard output file. It is only slightly more
complicated to use other files. The following IDL statements show how the above
“Hello World” example could be sent to a file named hello.dat:

;Open LUN 1 for hello.dat with write access.
OPENW, 1, 'hello.dat'

;Do the output operation to the file.
PRINTF, 1, 'Hello World.'

;Close the file.
CLOSE, 1
Building IDL Applications File I/O in IDL



148 Chapter 8: Files and Input/Output
Routines for Input/Output

The following routines are useful when doing input/output operations. For more
information on these commands, see IDL Reference Guide.

Routine Description

ASCII_TEMPLATE Presents a GUI that generates a template
defining an ASCII file format.

ASSOC Associates an array structure with a file.

BINARY_TEMPLATE Presents a GUI for interactively generating a
template structure for use with
READ_BINARY.

CDF Routines Common Data Format routines.

CLOSE Closes the specified files.

DIALOG_READ_IMAGE Presents GUI for reading image files.

DIALOG_WRITE_IMAGE Presents GUI for writing image files.

EOF Tests the specified file for the end-of-file
condition.

EOS Routines HDF-EOS (Hierarchical Data Format-Earth
Observing System) routines.

FILEPATH Returns full path to a file in the IDL distribution.

FINDFILE Finds all files matching given file specification.

FLUSH Flushes file unit buffers.

FREE_LUN Frees previously-reserved file units.

FSTAT Returns information about a specified file unit.

GET_KBRD Gets one input IDL character.

GET_LUN Reserves a logical unit number (file unit).

HDF Routines Hierarchical Data Format routines.

HDF_BROWSER Opens GUI to view contents of HDF, HDF-
EOS, or NetCDF file.

Table 8-1: Routines for Input/Output
File I/O in IDL Building IDL Applications



Chapter 8: Files and Input/Output 149
HDF_READ Extracts HDF, HDF-EOS, and NetCDF data and
metadata into an output structure.

IOCTL Performs special functions on UNIX files.

MPEG_CLOSE Closes an MPEG sequence.

MPEG_OPEN Opens an MPEG sequence.

MPEG_PUT Inserts an image array into an MPEG sequence.

MPEG_SAVE Saves an MPEG sequence to a file.

NCDF Routines Network Common Data Format routines.

OPEN Opens files for reading, updating, or writing.

POINT_LUN Sets or gets current position of the file pointer.

PRINT/PRINTF Writes formatted output to screen or file.

READ/READF Reads formatted input from keyboard or file.

READ_ASCII Reads data from an ASCII file.

READ_BINARY Reads the contents of a binary file using a
passed template or basic command line
keywords.

READ_BMP Reads Microsoft Windows bitmap file (.BMP).

READ_DICOM Reads an image from a DICOM file.

READ_IMAGE Reads the image contents of a file and returns
the image in an IDL variable.

READ_INTERFILE Reads Interfile (v3.3) file.

READ_JPEG Reads JPEG file.

READ_PICT Reads Macintosh PICT (version 2) bitmap file.

READ_PNG Reads Portable Network Graphics (PNG) file.

READ_PPM Reads PGM (gray scale) or PPM (portable
pixmap for color) file.

READ_SRF Reads Sun Raster Format file.

Routine Description

Table 8-1: Routines for Input/Output (Continued)
Building IDL Applications File I/O in IDL



150 Chapter 8: Files and Input/Output
READ_SYLK Reads Symbolic Link format spreadsheet file.

READ_TIFF Reads TIFF format file.

READ_WAV Reads the audio stream from the named .WAV
file.

READ_WAVE Reads Wavefront Advanced Visualizer file.

READ_X11_BITMAP Reads X11 bitmap file.

READ_XWD Reads X Windows Dump file.

READS Reads formatted input from a string variable.

READU Reads unformatted binary data from a file.

REWIND (VMS only) Rewinds tape on designated IDL tape unit.

SKIPF Skips records or files on the designated
magnetic tape unit.

SOCKET Opens a client-side TCP/IP Internet socket as an
IDL file unit.

TAPRD Reads the next record on a tape.

TAPWRT Writes data to a tape.

TVRD Reads an image from a window into a variable.

VAX_FLOAT Determines the default value for the
VAX_FLOAT keyword to the OPEN
procedures, or if an open file unit has the
VAX_FLOAT attribute set.

WEOF Writes an end-of-file mark on the designated
tape unit.

WRITE_BMP Writes Microsoft Windows Version 3 device
independent bitmap file (.BMP).

WRITE_IMAGE Writes an image and its color table vectors, if
any, to a file of a specified type.

WRITE_JPEG Writes JPEG file.

Routine Description

Table 8-1: Routines for Input/Output (Continued)
File I/O in IDL Building IDL Applications



Chapter 8: Files and Input/Output 151
WRITE_NRIF Writes NCAR Raster Interchange Format
rasterfile.

WRITE_PICT Writes Macintosh PICT (version 2) bitmap file.

WRITE_PNG Writes Portable Network Graphics (PNG) file.

WRITE_PPM Writes PPM (true-color) or PGM (gray scale)
file.

WRITE_SRF Writes Sun Raster File (SRF).

WRITE_SYLK Writes SYLK (Symbolic Link) spreadsheet file.

WRITE_TIFF Writes TIFF file with 1 to 3 channels.

WRITE_WAV Writes the audio stream to the named .WAV
file.

WRITE_WAVE Writes Wavefront Advanced Visualizer (.WAV)
file.

WRITEU Writes unformatted binary data to a file.

Routine Description

Table 8-1: Routines for Input/Output (Continued)
Building IDL Applications File I/O in IDL



152 Chapter 8: Files and Input/Output
Unformatted Input/Output

Unformatted Input/Output is the most basic form of input/output. Unformatted
input/output transfers the internal binary representation of the data directly between
memory and the file.

Advantages of Unformatted I/O

Unformatted input/output is the simplest and most efficient form of input/output. It is
usually the most compact way to store data.

Disadvantages of Unformatted I/O

Unformatted input/output is the least portable form of input/output. Unformatted data
files can only be moved easily to and from computers that share the same internal
data representation. It should be noted that XDR (eXternal Data Representation)
files, described in “Portable Unformatted Input/Output” on page 204, can be used to
produce portable binary data.

Unformatted input/output is not directly human readable, so you cannot type it out on
a terminal screen or edit it with a text editor.
Unformatted Input/Output Building IDL Applications



Chapter 8: Files and Input/Output 153
Formatted Input/Output

Formatted output converts the internal binary representation of the data to ASCII
characters which are written to the output file. Formatted input reads characters from
the input file and converts them to internal form. Formatted I/O can be either “Free”
format or “Explicit” format, as described below.

Advantages of Formatted I/O

Formatted input/output is very portable. It is a simple process to move formatted data
files to various computers, even computers running different operating systems, as
long as they all use the ASCII character set. (ASCII is the American Standard Code
for Information Interchange. It is the character set used by almost all current
computers, with the notable exception of large IBM mainframes.)

Formatted files are human readable and can be typed to the terminal screen or edited
with a text editor.

Disadvantages of Formatted I/O

Formatted input/output is more computationally expensive than unformatted
input/output because of the need to convert between internal binary data and ASCII
text. Formatted data requires more space than unformatted to represent the same
information. Inaccuracies can result when converting data between text and the
internal representation.

Free Format I/O

With free format input/output, IDL uses default rules to format the data.

Advantages of Free Format I/O

The user is free of the chore of deciding how the data should be formatted. Free
format is extremely simple and easy to use. It provides the ability to handle the
majority of formatted input/output needs with a minimum of effort.

Disadvantages of Free Format I/O

The default formats used are not always exactly what is required. In this case, explicit
formatting is necessary.

Explicit Format I/O

Explicit format I/O allows you to specify the exact format for input/output.
Building IDL Applications Formatted Input/Output



154 Chapter 8: Files and Input/Output
Advantages of Explicit I/O

Explicit formatting allows a great deal of flexibility in specifying exactly how data
will be formatted. Formats are specified using a syntax that is similar to that used in
FORTRAN format statements. Scientists and engineers already familiar with
FORTRAN will find IDL formats easy to write. Commonly used FORTRAN format
codes are supported. In addition, IDL formats have been extended to provide many of
the capabilities found in the scanf () and printf () functions commonly found in the C
language runtime library.

Disadvantages of Explicit I/O

Using explicitly specified formats requires the user to specify more detail—they are,
therefore, more complicated to use than free format.

The type of input/output to use in a given situation is usually determined by
considering the advantages and disadvantages of each method as they relate to the
problem to be solved. Also, when transferring data to or from other programs or
systems, the type of input/output is determined by the application. The following
suggestions are intended to give a rough idea of the issues involved, though there are
always exceptions:

• Images and large data sets are usually stored and manipulated using
unformatted input/output in order to minimize processing overhead. The IDL
ASSOC function is often the natural way to access such data.

• Data that need to be human readable should be written using formatted
input/output.

• Data that need to be portable should be written using formatted input/output.
Another option is to use unformatted XDR files by specifying the XDR
keyword with the OPEN procedures. This is especially important if moving
between computers with markedly different internal binary data formats. XDR
is discussed in “Portable Unformatted Input/Output” on page 204.

• Free format input/output is easier to use than explicitly formatted input/output
and about as easy as unformatted input/output, so it is often a good choice for
small files where there is no strong reason to prefer one method over another.

• Special well-known complex file formats are usually supported directly with
special IDL routines (e.g. READ_JPEG for JPEG images).
Formatted Input/Output Building IDL Applications



Chapter 8: Files and Input/Output 155
Opening Files

Before a file can be processed by IDL, it must be opened using one of the procedures
described in the following table. All open files are associated with a LUN (Logical
Unit Number) within IDL, and all input/output routines refer to files via this number.
For example, to open the file named data.dat for reading on file unit 1, use the
following statement:

OPENR, 1, 'data.dat'

The OPEN procedures can be used with certain keywords to modify their normal
behavior. Some keywords are generally applicable, while others only have effect
under a given operating system. Some operating system specific keywords are
allowed (and ignored) under other operating systems in order to facilitate writing
portable routines.

Platform-Specific Keywords to the OPEN Procedure

Different computers and operating systems perform input/output in different ways.
See OPEN in the IDL Reference Guide for keywords to the OPEN procedures that
apply under UNIX, VMS, Windows, or the Macintosh OS.

Procedure Description

OPENR Opens an existing file for input only.

OPENW Opens a new file for input and output. Under UNIX, Windows,
and on the Macintosh, if the named file already exists, its old
contents are overwritten. Under VMS, a file with the same
name and a higher version number is created.

OPENU Opens an existing file for input and output.

Table 8-2: IDL File Opening Commands
Building IDL Applications Opening Files



156 Chapter 8: Files and Input/Output
Closing Files

After work involving the file is complete, it should be closed. Closing a file removes
the association between the file and its unit number, thus freeing the unit number for
use with a different file. There is usually an operating system-imposed limit on the
number of files a user may have open at once. Although this number is large enough
that it rarely causes problems, situations can occur where a file must be closed before
another file may be opened. In any event, it is good style to only keep needed files
open.

There are three ways to close a file:

• Use the CLOSE procedure.

• Use the FREE_LUN procedure on a LUN that has been allocated by
GET_LUN.

• Exit IDL. IDL closes all open files when it exits.

Calling the CLOSE procedure is the most common way to close a file unit. For
example, to close file unit number 1, use the following statement:

CLOSE, 1

In addition, if FREE_LUN is called with a file unit number that was previously
allocated by GET_LUN, it calls CLOSE before deallocating the file unit. Finally, all
open files are automatically closed when IDL exits.
Closing Files Building IDL Applications



Chapter 8: Files and Input/Output 157
Logical Unit Numbers (LUNs)

IDL Logical Unit Numbers (LUNs) fall within the range −2 to 128. Some LUNs are
reserved for special functions as described below.

The Standard Input, Output, and Error LUNs

The three LUNs described below have special meanings that are operating system
dependent:

UNIX

Logical Unit Numbers 0, -1, and -2 are tied to stdin, stdout, and stderr, respectively.
This means that the normal UNIX file redirection and pipe operations work with IDL.
For example, the shell command

%idl < idl.inp >& idl.out &

will cause IDL to execute in the background, reading its input from the file idl.inp
and writing its output to the file idl.out. Any messages sent to stderr are also sent to
idl.out.

When using the IDL Development Environment (IDLDE), Logical Unit Numbers 0, -
1, and -2 are tied to stdin (the command line), stdout (the log window), and stderr
(the log window), respectively.

VMS

Logical Unit Numbers 0, -1, and -2 are tied to SYS$INPUT, SYS$OUTPUT, and
SYS$ERROR respectively. This means that the DCL DEFINE command can be used
to redefine where IDL gets commands and writes its output. It also means that IDL
can be used in command and batch files.

When using the IDL Development Environment (IDLDE), Logical Unit Numbers 0, -
1, and -2 are tied to SYS$INPUT (the command line), SYS$OUTPUT (the log
window), and SYS$ERROR (the log window), respectively.

Windows and Macintosh

Logical Unit Numbers 0, -1, and -2 are tied to stdin (the command line), stdout (the
log window), and stderr (the log window), respectively.

These special file units are described in more detail below.
Building IDL Applications Logical Unit Numbers (LUNs)



158 Chapter 8: Files and Input/Output
File Unit 0

This LUN represents the standard input stream, which is usually the keyboard.
Therefore, the IDL statement:

READ, X

is equivalent to the following:

READF, 0, X

File Unit -1

This LUN represents the standard output stream, which is usually the terminal screen.
Therefore, the IDL statement:

PRINT, X

is equivalent to the following:

PRINTF, -1, X

File Unit -2

This LUN represents the standard error stream, which is usually the terminal screen.

File Units 1–99

These are the file units for normal interactive use. When using IDL interactively, the
user arbitrarily selects the file units used. The file units from 1 to 99 are available for
this use.

File Units 100–128

These are the file units managed by the GET_LUN and FREE_LUN procedures. If an
IDL procedure or function that uses files is written to explicitly use a given file unit,
there is a chance that it will conflict with other routines that use the same unit. It is
therefore necessary to avoid explicit file unit numbers when writing IDL procedures
and functions. The GET_LUN and FREE_LUN procedures provide a standard
mechanism for IDL routines to obtain unique file units. GET_LUN allocates a file
unit from a pool of free units in the range 100 to 128. This unit will not be allocated
again until it is released by a call to FREE_LUN. Meanwhile, it is available for the
exclusive use of the program that allocated it. A typical procedure that needs a file
unit might be structured as follows:

PRO DEMO
;Get a unique file unit and open the file.
OPENR, UNIT, /GET_LUN
Logical Unit Numbers (LUNs) Building IDL Applications



Chapter 8: Files and Input/Output 159
;Body of program goes here.
.
.
.

;Return file unit.
FREE_LUN, UNIT

;Since the file is still open, FREE_LUN will automatically call
;CLOSE.
END

Note
All IDL procedures and functions that open files should use GET_LUN/ FREE_LUN
to obtain file units. Furthermore, the file units between 100 and 128 should never be
used unless previously allocated by GET_LUN.
Building IDL Applications Logical Unit Numbers (LUNs)



160 Chapter 8: Files and Input/Output
Reading and Writing Very Large Files

IDL on all platforms is able to read and write data from files up to 2^31-1 bytes in
length. On some platforms, it is also able to read and write data from files longer than
this limit.

Tip
To see if IDL on your platform supports large files, use the following:

PRINT, !VERSION.FILE_OFFSET_BITS

IF “64” is returned, the platform supports large files. For more information, see
!VERSION in the IDL Reference Guide.

When reading and writing to files smaller than this limit, there is no difference in
behavior between the platforms that can and those that cannot handle larger files. IDL
uses longword integers for file position arguments (e.g. POINT_LUN, FSTAT) and
keywords, as before. However, when dealing with files that exceed this limit, IDL
uses signed 64-bit integers in order to be able to properly represent the offset.
Consider the following example:

;Open the file
OPENW, 1, 'test.dat'

;Initial position should be 0.
POINT_LUN, -1, POS

;Print the position and its type.
HELP, POS

;Move the file pointer past the signed 32-bit boundary.
POINT_LUN, 1, '000000ffffffffff'x

;The position is now too large to represent as a longword.
POINT_LUN, -1, POS

;Print the position and its type.
HELP, POS

CLOSE, 1
Reading and Writing Very Large Files Building IDL Applications



Chapter 8: Files and Input/Output 161
Executing these statements results in the following output:

POS             LONG      =            0
POS             LONG64    =          1099511627775

Initially, the file position is 0, which fits easily into a 32-bit integer. Once the file
position exceeds the range of a signed 32-bit number, IDL automatically shifts to the
64-bit integer type.

Limitations of Large File Support

There are limitations on IDL’s support for very large files that must be understood by
the IDL programmer:

• On any platform, the amount of data that IDL can transfer in a single operation
is limited by the amount of memory it can allocate. On most platforms, IDL is
a 32-bit program, and as such, can theoretically address up to 2^31-1 bytes of
memory (approximately 2.3GB). On these 32-bit platforms, reading, writing,
and processing data larger than this limit must be done in multiple operations.
Most systems do not have 2.3 GB of memory available, and other programs
running on the system also compete for the same memory, so the actual
memory available is likely to be considerably smaller.

To see if your platform is 32- or 64-bit, use the following:

PRINT, !VERSION.MEMORY_BITS

IF “32” is returned, your platform is 32-bit. If “64” is returned, your platform
is 64-bit. For more information, see !VERSION in the IDL Reference Guide.

• The ability to read or write to very large files is constrained by the ability of
the underlying file system to support such files. Many platforms can only
support large files on certain file systems. For example, many platforms will
be unable to support these operations on NFS mounted file systems because
NFS version 3 and later must be in use on both client and server. Some
platforms, such HP-UX, can only support such operations on special large file
systems, and only if they are mounted using the appropriate mount options.
Consult your system documentation to determine the limitations present on
your system and the procedures for supporting very large file.
Building IDL Applications Reading and Writing Very Large Files



162 Chapter 8: Files and Input/Output
Using Free Format Input/Output

Use of formatted data is most appropriate when the data must be in human readable
form, such as when it is to be prepared or modified with a text editor. Formatted data
also are highly portable between various computers and operating systems.

In addition to the PRINT, PRINTF, READ, and READF routines already discussed,
the STRING function can be used to generate formatted output that is sent to a string
variable instead of a file. The READS procedure can be used to read formatted input
from a string variable.

The exact format of the character data may be specified to these routines by
providing a format string via the FORMAT keyword. If no format string is given,
default formats for each type of data are applied. This method of formatted
input/output is called free format. Free format input/output is suitable for most
applications involving formatted data. It is designed to provide input/output abilities
with a minimum of programming.

Structures and Free Format Input/Output

IDL structures present a special problem for default formatted input and output. The
default format for displaying structure data is to surround the structure with curly
braces ({}). For example, if you define an anonymous structure:

struct = { A:2, B:3, C:'A String' }

and then use default formatted output via the PRINT command:

PRINT, struct

IDL prints:

{       2       3 A String}

You might suppose that default formatted input would recognize that the curly braces
are part of the formatting and ignore them. This is not the case, however. By default,
to read the third field in the structure (the string field) IDL will read from the “A” to
the end of the line, including the closing brace.

This behavior, while unsymmetric, seems to be the best choice for default behavior—
displaying the result of the PRINT statement on the computer screen. We recommend
that you use explicitly formatted input/output when reading and writing structures to
disk files, so as not to have to explicitly code around the possibility that your
structure may include strings.
Using Free Format Input/Output Building IDL Applications



Chapter 8: Files and Input/Output 163
Free Format Input

The following rules are used by IDL to perform free format input:

1. Input is performed on scalar variables. Array and structure variables are treated
as collections of scalar variables. For example,

A = INTARR(5)
READ, A

causes IDL to read five separate values to fill each element of the variable A.

2. If the current input line is empty and there are variables left requiring input,
read another line.

3. If the current input line is not empty but there are no variables left requiring
input, the remainder of the line is ignored.

4. Input data must be separated by commas or white space (tabs, spaces, or new
lines).

5. When reading into a variable of type string, all characters remaining in the
current input line are placed into the string.

6. When reading into numeric variables, every effort is made to convert the input
into a value of the expected type. Decimal points are optional and exponential
(scientific) notation is allowed. If a floating-point datum is provided for an
integer variable, the value is truncated.

7. When reading into a variable of complex type, the real and imaginary parts are
separated by a comma and surrounded by parentheses. If only a single value is
provided, it is taken as the real part of the variable, and the imaginary part is
set to zero. For example:

;Create a complex variable.
A = COMPLEX(0)

;IDL prompts for input with a colon:
READ, A

;The user enters "(3,4)" and A is set to COMPLEX(3, 4).
:(3, 4)

;IDL prompts for input with a colon:
READ, A

;The user enters "50" and A is set to COMPLEX(50, 0).
:50
Building IDL Applications Using Free Format Input/Output



164 Chapter 8: Files and Input/Output
Free Format Output

The following rules are used by IDL to perform free format output:

1. The format used to output numeric data is determined by the data type. The
formats used are summarized in the table below. The formats are specified in
the FORTRAN-like style used by IDL for explicitly formatted input/output.

2. The current output line is filled with characters until one of the following
happens:

A. There is no more data to output.

B. The output line is full. When output is to a file, the default line width is 80
columns (you can override this default by setting the WIDTH keyword to
the OPEN procedure). When the output is to the standard output, IDL uses
the current width of your tty or command log window.

C. An entire row is output in the case of multidimensional arrays.

3. When outputting a structure variable, its contents are bracketed with “{” and
“}” characters.

Data Type Format

Byte I4

Int, UInt I8

Long, ULong I12

Float G13.6

Long64, ULong64 I22

Double G16.8

Complex '(', G13.6, ',', G13.6, ')'

Double-precision Complex '(', G16.8, ',', G16.8, ')'

String Output full string on current line.

Table 8-3: Formats Used for Free-Format Output
Using Free Format Input/Output Building IDL Applications



Chapter 8: Files and Input/Output 165
Example: Free Format Input/Output

IDL free format input/output is extremely easy to use. The following IDL statements
demonstrate how to read into a complicated structure variable and then print the
results:

;Create a structure named "types" that contains seven of the basic
;IDL data types, as well as a floating-point array.
A = {TYPES, A:0B, B:0, C:0L, D:1.0, E:1D, $

F:COMPLEX(0), G: 'string', E:FLTARR(5)}

;Read free-formatted data from input
READ, A

;IDL prompts for input with a colon. We enter values for the first
;six numeric fields of A and the string.
: 1 2 3 4 5 (6,7) EIGHT

Notice that the complex value was specified as (6, 7). If the parentheses had been
omitted, the complex field of A would have received the value COMPLEX(6, 0), and
the 7 would have been input for the next field. When reading into a string variable,
IDL starts from the current point in the input and continues to the end of the line.
Thus, we do not enter values intended for the rest of the structure on this line.

;There are still fields of A that have not received data, so IDL
;prompts for another line of input.
: 9 10 11 12 13

;Show the result.
PRINT, A

Executing these statements results in the following output:

{   1       2           3      4.00000       5.0000000
(      6.00000,      7.00000)  eight

9.00000      10.0000      11.0000      12.0000 13.0000
}

When producing the output, IDL uses default rules for formatting the values and
attempts to place as many items as possible onto each line. Because the variable A is
a structure, braces {} are placed around the output. As noted above, when IDL reads
strings it continues to the end of the line. For this reason, it is usually convenient to
place string variables at the end of the list of variables to be input. For example, if S
is a string variable and I is an integer:

;Read into the string first.
READ, S, I
Building IDL Applications Using Free Format Input/Output



166 Chapter 8: Files and Input/Output
;IDL prompts for input. We enter a string value followed by an
;integer.
: Hello World 34

;The entire previous line was placed into the string variable S,
;and I still requires input. IDL prompts for another line.
: 34
Using Free Format Input/Output Building IDL Applications



Chapter 8: Files and Input/Output 167
Using Explicitly Formatted Input/Output

The FORMAT keyword can be used with the formatted input/output routines to
explicitly specify the appearance of the data. The syntax of IDL format strings is
extremely similar to that used in FORTRAN. The format string specifies the format
in which data is to be transferred as well as the data conversion required to achieve
that format. The format specification strings supplied by the FORMAT keyword have
the form:

FORMAT = '(q1f1s1f2s2 ... fnqn)'

where q, f, and s are described below.

Record Terminators

q is zero or more slash (/) record terminators. On output, each record terminator
causes the output to move to a new line. On input, each record terminator causes the
next line of input to be read.

Format Codes

f is a format code. Some format codes specify how data should be transferred while
others control some other function related to how input/output is handled. The code f
can also be a nested format specification enclosed in parentheses. This is called a
group specification and has the following form:

...[n](q1f1s1f2s2 ... fnqn) ...

A group specification consists of an optional repeat count n followed by a format
specification enclosed in parentheses. Use of group specifications allows more
compact format specifications to be written. For example, the format specification:

FORMAT = '("Result: ", "<",I5,">", "<",I5,">")'

can be written more concisely using a group specification:

FORMAT = '("Result: ", 2("<",I5,">"))'

If the repeat count is 1 or is not given, the parentheses serve only to group format
codes for use in format reversion (discussed in the next section).

Field Separators

s is a field separator. A field separator consists of one or more commas (,) and/or
slash record terminators (/). The only restriction is that two commas cannot occur
side-by-side.
Building IDL Applications Using Explicitly Formatted Input/Output



168 Chapter 8: Files and Input/Output
The arguments provided in a call to a formatted input/output routine are called the
argument list. The argument list specifies the data to be moved between memory and
the file. All data are handled in terms of basic IDL components. Thus, an array is
considered to be a collection of scalar data elements, and a structure is processed in
terms of its basic components. Complex scalar values are treated as two floating-
point values.

Rules for Explicitly Formatted Input/Output

IDL uses the following rules to process explicitly formatted input/output:

1. Traverse the format string from left to right, processing each record terminator
and format code until an error occurs or no data is left in the argument list. The
comma field separator serves no purpose except to delimit the format codes.

2. It is an error to specify an argument list with a format string that does not
contain a format code that transfers data to or from the argument list because
an infinite loop would result.

3. When a slash record terminator (/) is encountered, the current record is
completed, and a new one is started. For output, this means that a new line is
started. For input, it means that the rest of the current input record is ignored,
and the next input record is read.

4. When a format code that does not transfer data to or from the argument list is
encountered, process it according to its meaning. The format codes that do not
Using Explicitly Formatted Input/Output Building IDL Applications



Chapter 8: Files and Input/Output 169
transfer data to or from the argument list are summarized in the following
table:

5. When a format code that transfers data to or from the argument list is
encountered, it is matched up with the next datum in the argument list. The

Code Action

Quoted String On output, the contents of the string are written out. On input,
quoted strings are ignored.

: The colon format code in a format string terminates format
processing if no more items remain in the argument list. It has no
effect if data still remains on the list.

$ On output, if a $ format code is placed anywhere in the format
string, the new line implied by the closing parenthesis of the
format string is suppressed. On input, the $ format code is
ignored.

nH FORTRAN-style Hollerith string. Hollerith strings are treated
exactly like quoted strings.

nX Skips n character positions.

Tn Tab. Sets the character position of the next item in the current
record.

TLn Tab Left. Specifies that the next character to be transferred to or
from the current record is the n-th character to the left of the
current position.

TRn Tab Right. Specifies that the next character to be transferred to or
from the current record is the n-th character to the right of the
current position.

Table 8-4: Format Codes that do not Transfer Data
Building IDL Applications Using Explicitly Formatted Input/Output



170 Chapter 8: Files and Input/Output
format codes that transfer data to or from the argument list are summarized in
the following table:

6. On input, read data from the file and format it according to the format code. If
the data type of the input data does not agree with the data type of the variable
that is to receive the result, do the type conversion if possible; otherwise, issue
a type conversion error and stop.

7. On output, write the data according to the format code. If the data type does
not agree with the format code, do the type conversion prior to doing the
output if possible. If the type conversion is not possible, issue a type
conversion error and stop.

8. If the last closing parenthesis of the format string is reached and there are no
data left on the argument list, then format processing terminates. If, however,
there are still data to be processed on the argument list, then part or all of the
format specification is reused. This process is called format reversion.

Code Action

A Transfer character data.

C() Transfer calendar (Julian date and/or time) data.

D Transfer double-precision, floating-point data.

E Transfer floating-point data using scientific (exponential)
notation.

F Transfer floating-point data.

G Use F or E format depending on the magnitude of the value being
processed.

I Transfer integer data.

O Transfer octal data.

Q Obtain the number of characters in the input record remaining to
be transferred during a read operation. In an output statement, the
Q format code has no effect except that the corresponding
input/output list element is skipped.

Z Transfer Hexadecimal data.

Table 8-5: Format Codes that Transfer Data
Using Explicitly Formatted Input/Output Building IDL Applications



Chapter 8: Files and Input/Output 171
Format Reversion

In format reversion, the current record is terminated, a new one is initiated, and
format control reverts to the group repeat specification whose opening parenthesis
matches the next-to-last closing parenthesis of the format string. If the format does
not contain a group repeat specification, format control returns to the initial opening
parenthesis of the format string. For example, the IDL command:

PRINT, FORMAT = '("The values are: ", 2("<", I1, ">"))', $
INDGEN(6)

results in the output

The values are: <0><1>
<2><3>
<4><5>

The process involved in generating this output is as follows:

1. Output the string “The values are: ”.

2. Process the group specification and output the first two values. The end of the
format specification is encountered, so end the output record. Data are
remaining, so move back to the group specification

2("<", I1, ">")
by format reversion.

3. Repeat Step 2 until no data remain. End the output record. Format processing
is complete.
Building IDL Applications Using Explicitly Formatted Input/Output



172 Chapter 8: Files and Input/Output
Format Codes

“A” Format Code

The A format code transfers character data. The format is

[n]A[w]

where:

n — is an optional repeat count (1 ≤ n ≤ 32767) specifying the number of times the
format code should be processed. If n is not specified, a repeat count of one is used.

w — is an optional width (1 ≤ w ≤ 256) specifying the number of characters to be
transferred. If w is not specified, the entire string is transferred. On output, if w is
greater than the length of the string, the string is right justified. On input, IDL strings
have dynamic length, so w specifies the resulting length of input string variables.

For example, the IDL statement,

PRINT, FORMAT = '(A6)', '123456789'

generates the following output:

123456

Note
While an IDL string variable can hold up to 64 Kbytes of information, the buffer
than handles input at the IDL command prompt is limited to 255 characters. If for
some reason you need to create a string variable longer than 255 characters at the
IDL command prompt, split the variable into multiple sub-variables and combine
them with the “+” operator:

var = var1+var2+var3

This limit only affects string constants created at the IDL command prompt.

“:” Format Code

The colon format code terminates format processing if there are no more data
remaining in the argument list. For example, the IDL statement,

PRINT, FORMAT = '(6(I1, :, ", "))', INDGEN(6)

will output the following comma-separated list of integer values:
Format Codes Building IDL Applications



Chapter 8: Files and Input/Output 173
0, 1, 2, 3, 4, 5

The use of the colon format code prevented a comma from being output following the
final item in the argument list.

“$” Format Code

When IDL completes output format processing, it normally outputs a newline to
terminate the output operation. However, if a “$” format code is found in the format
specification, this default newline is not output. The “$” format code is only used on
output; it is ignored during input formatting. The most common use for the “$”
format code is in prompting for user input. For example, the IDL statements,

;Prompt for input. Suppress the carriage return.
PRINT, FORMAT = '($, "Enter value: ")'

;Read the response.
READ, VALUE

will prompt for input without forcing the user’s response to appear on a separate line
from the prompt. Under VMS, the “$” format code does not work with files opened
with carriage-return carriage control, which is the default for new files. However, it
does work with explicit or FORTRAN carriage control. FORTRAN carriage control
is described in “Reading FORTRAN-Generated Unformatted Data with IDL” on
page 224.

“F,” “D,” “E,” and “G” Format Codes

The F, D, E, and G format codes are used to transfer floating-point values between
memory and the specified file. The format is

[n]F[w.d]
[n]D[w.d]
[n]E[w.d] or [n]E[w.dEe]
[n]G[w.d] or [n]G[w.dEe]

where

n — is an optional repeat count (1 ≤ n ≤ 32767) specifying the number of times the
format code should be processed. If n is not specified, a repeat count of 1 is used.

w.d — is an optional width specification (1 ≤ w ≤ 256, 1 ≤ d < w). The variable w
specifies the number of characters in the external field. For the F, D, and E format
codes, d specifies the number of positions after the decimal point. For the G format
code, d specifies the number of significant digits displayed.
Building IDL Applications Format Codes



174 Chapter 8: Files and Input/Output
e — is an optional width (1 ≤ e ≤ 256) specifying the width of exponent part of the
field. IDL ignores this value—it is allowed for compatibility with FORTRAN.

On input, the F, D, E, and G format codes all transfer w characters from the external
field and assign them as a real value to the corresponding input/output argument list
datum.

The F and D format codes are used to output values using fixed-point notation. The
value is rounded to d decimal positions and right-justified into an external field that is
w characters wide. The value of w must be large enough to include a minus sign when
necessary, at least one digit to the left of the decimal point, the decimal point, and d
digits to the right of the decimal point. The code D is identical to F (except for its
default values for w and d) and exists in IDL primarily for compatibility with
FORTRAN.

The E format code is used for scientific (exponential) notation. The value is rounded
to d decimal positions and right-justified into an external field that is w characters
wide. The value of w must be large enough to include a minus sign when necessary,
at least one digit to the left of the decimal point, the decimal point, d digits to the right
of the decimal point, a plus or minus sign for the exponent, the character “e” or “E”,
and at least two characters for the exponent.

Note
IDL uses a standard I/O function to format numbers and their exponents. As a
result, different platforms may print different numbers of exponent digits.

The G format code uses the F output style when reasonable and E for other values,
but displays exactly d significant digits rather than d digits following the decimal
point.

On output, if the field provided is not wide enough, it is filled with asterisks (*) to
indicate the overflow condition. If w is zero, the “natural” width for the value is
used—the value is read or output using a default format without any leading or
trailing whitespace, in the style of the C standard input/output library printf (3S)
function. See “C printf-Style Quoted String Format Code” on page 187 for more
information on C printf-style formatting.
Format Codes Building IDL Applications



Chapter 8: Files and Input/Output 175
If w, d, or e are omitted, the values specified in the following table are used.

Using a value of zero for the w parameter is useful when reading tables of data in
which individual elements may be of varying lengths. For example, if your data
reside in tables of the following form:

26.01 92.555 344.2
101.0 6.123 99.845
23.723 200.02 141.93

setting the format to

FORMAT = '(3F0)'

ensures that the correct number of digits are read or output for each element.

Normally, the case of the format code is ignored by IDL. However, the case of the E
and G format codes determines the case used to output the exponent in scientific
notation. The following table gives examples of several floating-point formats and
the resulting output.

Data Type w d e

Float, Complex 15 7 2 (3 for Windows)

Double 25 16 2 (3 for Windows)

All Other Types 25 16 2 (3 for Windows)

Table 8-6: Floating Format Defaults

Format Internal Value Formatted Output

F 100.0 bbbb100.0000000

F 100.0D bbbbb100.0000000000000000

F10.0 100.0 bbbbbb100.

F10.1 100.0 bbbbb100.0

F10.4 100.0 bb100.0000

F2.1 100.0 **

Table 8-7: Floating-Point Output Examples (“b” represents a blank space)
Building IDL Applications Format Codes



176 Chapter 8: Files and Input/Output
“I,” “O,” and “Z” Format Codes

The I, O, and Z format codes are used to transfer integer values to and from the
specified file. The I format code is used to output decimal values, O is used for octal
values, and Z is used for hexadecimal values.

The format is as follows:

[n]I[w] or [n]I[w.m]
[n]O[w] or [n]O[w.m]
[n]Z[w] or [n]Z[w.m]

where

n — is an optional repeat count (1 ≤ n ≤ 32767) specifying the number of times the
format code should be processed. If n is not specified, a repeat count of 1 is used.

e11.4 100.0 b1.0000e+02

1.0000e+002 (Windows)

Note that “e10.4” would not work on
Windows because the extra “0”
added after the “e” makes the string
longer than 10 characters.

E11.4 100.0 b1.0000E+02

1.0000E+002 (Windows)

g10.4 100.0 bbbbb100.0

g10.4 10000000.0 b1.000e+07

1.000e+007 (Windows)

G10.4 10000000.0 b1.000E+07

1.000E+007 (Windows)

Format Internal Value Formatted Output

Table 8-7: Floating-Point Output Examples (“b” represents a blank space)
Format Codes Building IDL Applications



Chapter 8: Files and Input/Output 177
w — is an optional integer value (1 ≤ w ≤ 256) specifying the width of the field in
characters. The default values used if w is omitted are specified in the following
table:

If the field provided is not wide enough, it is filled with asterisks (*) to indicate the
overflow condition. If w is zero, the “natural” width for the value is used—the value
is read or output using a default format without any leading or trailing white space, in
the style of the C standard input/output library printf (3S) function. See “C printf-
Style Quoted String Format Code” on page 187 for more information on C printf-
style formatting.

Note that using a value of zero for the w parameter is useful when reading tables of
data in which individual elements may be of varying lengths. For example, if your
data reside in tables of the following form:

26 92 344
101 6 99
23 200 141

setting the format to

FORMAT = '(3I0)'

ensures that the correct number of digits are read or output for each element.

m — On output, m specifies the minimum number of nonblank digits required
(1 ≤ m ≤ 256). The field is zero-filled on the left if necessary. If m is omitted or zero,
the external field is blank filled.

Data Type w

Byte, Int, UInt 7

Long, ULong, Float 12

Long64, ULong64 22

Double 23

All Other Types 12

Table 8-8: Integer Format Defaults
Building IDL Applications Format Codes



178 Chapter 8: Files and Input/Output
Normally, the case of the format code is ignored by IDL. However, the case of the Z
format codes determines the case used to output the hexadecimal digits A-F. The
following table gives examples of several integer formats and the resulting output.

“Q” Format Code

The Q format code returns the number of characters in the input record remaining to
be transferred during the current read operation. It is ignored during output
formatting. Format Q is useful for determining how many characters have been read
on a line. For example, the following IDL statements count the number of characters
in file demo.dat:

;Open file for reading.
OPENR, 1, "demo.dat"

;Create a longword integer to keep the count.
N = 0L

Format Internal
Value

Formatted
Output

I 3000 bbb3000

I6.5 3000 b03000

I5.6 3000 *****

I2 3000 **

O 3000 bbb5670

O6.5 3000 b05670

O5.6 3000 *****

O2 3000 **

z 3000 bbbbbb8

Z 3000 bbbbBB8

Z6.5 3000 b00bb8

Z5.6 3000 *****

Z2 3000 **

Table 8-9: Integer Output Examples (“b” represents a blank space)
Format Codes Building IDL Applications



Chapter 8: Files and Input/Output 179
;Count the characters.
WHILE(NOT EOF(1)) DO BEGIN

READF, 1, CUR, FORMAT = '(q)' & N = N + CUR
END

;Report the result.
PRINT, FORMAT = '("counted", N, "characters.")'

;Close file.
CLOSE, 1

Quoted String and “H” Format Codes

On output, any quoted strings or Hollerith constants are sent directly to the output.
On input, they are ignored. For example, the IDL statement,

PRINT, FORMAT = '("Value: ", I0)', 23

results in the following output:

Value: 23

Notice the use of single quotes around the entire format string and double quotes
around the quoted string inside the format. This is necessary because we are
including quotes inside a quoted string. It would have been equally correct to use
double quotes around the entire format string and single quotes internally. Another
way to specify the string is with a Hollerith constant as follows:

PRINT, FORMAT = '(7HValue: , I0)', 23

The format for a Hollerith constant is:

nHc1c2 c3 ... cn

where

n — is the number of characters in the constant (1 ≤ n ≤ 255).

ci — is the characters that make up the constant. The number of characters must agree
with the value provided for n.

See “C printf-Style Quoted String Format Code” on page 187 for an alternate form of
the Quoted String Format Code that supports C printf-style capabilities.

“T” Format Code

The T format code specifies the absolute position in the current record. The format is

Tn
Building IDL Applications Format Codes



180 Chapter 8: Files and Input/Output
where

n — is the absolute character position within the record to which the current position
should be set (1 ≤ n ≤ 32767).

T — differs from the TL, TR, and X format codes primarily in that it requires an
absolute position rather than an offset from the current position. For example,

PRINT, FORMAT = '("First", 20X, "Last", T10, "Middle")'

produces the following output:

FirstbbbbMiddlebbbbbbbbbbLast

where “b” represents a blank space.

“TL” Format Code

The TL format code moves the current position in the external record to the left. The
format is

TLn

where

n — is the number of characters to move left from the current position (1 ≤ n ≤
32767). If the value of n is greater than the current position, the current position is
moved to column one.

TL — is used to move backwards in the current record. It can be used on input to read
the same data twice or on output to position the output nonsequentially. For example,

PRINT, FORMAT = '("First", 20X, "Last", TL15, "Middle")'

produces the following output:

FirstbbbbbbbbbMiddlebbbbbLast

where “b” represents a blank space.

“TR” and “X” Format Codes

The TR and X format codes move the current position in the record to the right. The
format is

TRn
nX

where
Format Codes Building IDL Applications



Chapter 8: Files and Input/Output 181
n — is the number of characters to skip (1 ≤ n ≤ 32767). On input, n characters in the
current input record will be passed over. On output, the current output position is
moved n characters to the right.

The TR or X format codes can be used to leave whitespace in the output or to skip
over unwanted data in the input. For example,

PRINT, FORMAT = '("First", 15X, "Last")'

or

PRINT, FORMAT = '("First", TR15, "Last")'

results in the following output:

FirstbbbbbbbbbbbbbbbLast

where “b” represents a blank space.

These two format codes differ in one way. Using the X format code at the end of an
output record will not cause any characters to be written unless it is followed by
another format code that causes characters to be output. The TR format code always
writes characters in this situation. Thus,

PRINT, FORMAT = '("First", 15X)'

does not leave 15 blanks at the end of the line, but the following statement does:

PRINT, FORMAT = '("First", 15TR)'

“C()” Format Code

The C() format code is used to transfer calendar (Julian date and/or time) data. The
format is

[n]C([c0,c1,...,cx])

where:

n — is an optional repeat count (1 ≤ n ≤ 32767) specifying the number of times the
format code should be processed. If n is not specified, a repeat count of 1 is used.

ci — represents optional calendar format subcodes, or any of the standard format
codes that are allowed within a calendar specification, as described below. If no ci are
provided, the data will be transferred using the standard 24-character system format
that includes the day, date, time, and year, as shown in this string:

Thu Aug 13 12:01:32 1979

For input, this default is equivalent to:
Building IDL Applications Format Codes



182 Chapter 8: Files and Input/Output
C(CDWA, X, CMoA, X, CDI, X, CHI, X, CMI, X, CSI, CYI5)

For output, this default is equivalent to:

C(CDwA, X, CMoA, X, CDI2.2, X, CHI2.2, ":", CMI2.2, ":", CSI2.2,
CYI5)

Note
The C() format code represents an atomic data transfer. Nesting within the
parentheses is not allowed.

Note
For input using the calendar format codes, a small offset is added to each Julian date
to eliminate roundoff errors when calculating the day fraction from hours, minutes,
and seconds. This offset is given by the larger of EPS and EPS*Julian, where Julian
is the integer portion of the Julian date, and EPS is the EPS field from MACHAR.
For typical Julian dates, this offset is approximately 6x10–10 (which corresponds to
5x10–5 seconds). This offset ensures that if the Julian date is converted back to
hour, minute, and second, then the hour, minute, and second will have the same
integer values as were originally input.

Note
Calendar dates must be in the range 1 Jan 4716 B.C.E. to 31 Dec 5000000, which
corresponds to Julian values -1095 and 1827933925, respectively.

Calendar Format Subcodes

The following is a list of the subcodes allowed within the parenthesis of the C format
code:

“CMOA” subcodes

The CMOA subcodes transfers the month portion of a date as a string. The format for
an all upper case month string is:

CMOA[w]

The format for a capitalized month string is:

CMoA[w]

The format for an all lower case month string is:

CmoA[w]
Format Codes Building IDL Applications



Chapter 8: Files and Input/Output 183
Note
The case of the ‘M’ and ‘O’ of these subcodes will be ignored on input, or if the
MONTHS keyword for the current routine is explicitly set.

For these subcodes:

w — is an optional width (0 ≤ w ≤ 256) specifying the number of characters of the
month name to be transferred. If w is not specified, three characters will be
transferred. If w is 0, the natural length of the month name is transferred. On output, if
w is greater than the natural length of the month name, the string will be right
justified.

“CMOI” subcode

The CMOI subcode transfers the month portion of a date as an integer. The format is
as follows:

CMOI[w] or CMOI[w.m]

where:

w — is an optional width (1 ≤ w ≤ 256) specifying the width of the field in characters.
The default width is 2.

m — On output, m specifies the minimum number of nonblank digits required (1 ≤ m
≤ 256). The field is zero-filled on the left if necessary. If m is omitted or zero, the
external field is blank filled.

“CDI” subcode

The CDI subcode transfers the day portion of a date as an integer. The format is as
follows:

CDI[w] or CDI[w.m]

where:

w — is an optional width (1 ≤ w ≤ 256) specifying the width of the field in characters.
The default width is 2.

m — On output, m specifies the minimum number of nonblank digits required (1 ≤ m
≤ 256). The field is zero-filled on the left if necessary. If m is omitted or zero, the
external field is blank filled.
Building IDL Applications Format Codes



184 Chapter 8: Files and Input/Output
“CYI” subcode

The CYI subcode transfers the year portion of a date as an integer. The format is as
follows:

CYI[w] or CYI[w.m]

where:

w — is an optional width (1 ≤ w ≤ 256) specifying the width of the field in characters.
The default width is 4.

m — On output, m specifies the minimum number of nonblank digits required (1 ≤ m
≤ 256). The field is zero-filled on the left if necessary. If m is omitted or zero, the
external field is blank filled.

“CHI” subcodes

The CHI subcodes transfer the hour portion of a date as an integer. The format for 24
hour based integer is:

CHI[w] or CHI[w.m]

The format for a 12 hour based integer is:

ChI[w] or ChI[w.m]

For these subcodes:

w — is an optional width (1 ≤ w ≤ 256) specifying the width of the field in characters.
The default width is 2.

m — On output, m specifies the minimum number of nonblank digits required (1 ≤ m
≤ 256). The field is zero-filled on the left if necessary. If m is omitted or zero, the
external field is blank filled.

“CMI” subcode

The CMI subcode transfers the minute portion of a date as an integer. The format is
as follows:

CMI[w] or CMI[w.m]

where:

w — is an optional width (1 ≤ w ≤ 256) specifying the width of the field in characters.
The default width is 2.
Format Codes Building IDL Applications



Chapter 8: Files and Input/Output 185
m — On output, m specifies the minimum number of nonblank digits required (1 ≤ m
≤ 256). The field is zero-filled on the left if necessary. If m is omitted or zero, the
external field is blank filled.

“CSI” subcode

The CSI subcode transfers the seconds portion of a date as an integer. The format is
as follows:

CSI[w] or CSI[w.m]

where:

w — is an optional width (1 ≤ w ≤ 256) specifying the width of the field in characters.
The default width is 2.

m — On output, m specifies the minimum number of nonblank digits required (1 ≤ m
≤ 256). The field is zero-filled on the left if necessary. If m is omitted or zero, the
external field is blank filled.

“CSF” subcode

The CSF subcode transfers the seconds portion of a date as a floating-point value.
The format is as follows:

CSF[w.d]

where:

w.d — is an optional width specification (1 ≤ w ≤ 256, 1 ≤ d < w). The variable w
specifies the number of characters in the external field; the default is 5. The variable d
specifies the number of positions after the decimal point; the default is 2. The value
of w must be large enough to include at least one digit to the left of the decimal point,
the decimal point, and d digits to the right of the decimal point. On output, if the field
provided is not wide enough, it is filled with asterisks (*) to indicate the overflow
condition. If w is zero, the “natural” width for the value is used – the value is read or
output using a default format without any leading or trailing whitespace, in the style
of the C standard library printf (3S) function.

“CDWA” subcodes

The CDWA subcodes transfers the day of week portion of a data as a string. The
format for an all upper case day of week string is:

CDWA[w]

The format for a capitalized day of week string is:

CDwA[w]
Building IDL Applications Format Codes



186 Chapter 8: Files and Input/Output
The format for an all lower case day of week string is:

CdwA[w]

Note
The case of the ‘D’ and ‘W’ of these subcodes will be ignored on input, or if the
DAYS_OF_WEEK keyword for the current routine is explicitly set.

For these subcodes:

w — is an optional width (0 ≤ w ≤ 256), specifying the number of characters of the
day of week name to be transferred. If w is not specified, three characters will be
transferred. If w is 0, the natural length of the day of week name is transferred. On
output, if w is greater than the natural length of the day of week name, the string will
be right justified.

“CAPA” subcodes

The CAPA subcodes transfers the am or pm portion of a date as a string. The format
for an all upper case AM or PM string is:

CAPA[w]

The format for a capitalized AM or PM string is:

CApA[w]

The format for an all lower case AM or PM string is:

CapA[w]

Note
The case of the first ‘A’ and ‘P’ of these subcodes will be ignored on input, or if the
AM_PM keyword for the current routine is explicitly set.

For these subcodes:

w — is an optional width (0 ≤ w ≤ 256), specifying the number of characters of the
AM or PM string to be transferred. If w is not specified, two characters will be
transferred. If w is 0, the natural length of the AM or PM string is transferred. On
output, if w is greater than the natural length of the AM or PM string, the string will
be right justified.
Format Codes Building IDL Applications



Chapter 8: Files and Input/Output 187
Standard Format Codes Allowed within a Calendar Specification

None of these subcodes are allowed outside of a C() format specifier. In addition to
the subcodes listed above, only quoted strings, “TL”, “TR”, and “X” format codes are
allowed inside of the C() format specifier.

Example:

To print the current date in the default format:

PRINT, FORMAT='(C())', SYSTIME(/JULIAN)

The printed result should look something like:

Fri Aug 14 12:34:14 1998

Example:

To print the current date as a two-digit month value followed by a slash followed by a
two-digit day value:

PRINT, FORMAT='(C(CMOI,"/",CDI))',SYSTIME(/JULIAN)

The printed result should look something like:

8/14

Example:

To print the current time in hours, minutes, and floating-point seconds, all zero-filled
if necessary, and separated by colons:

PRINT, FORMAT= $
'(C(CHI2.2,":",CMI2.2,":",CSF5.2,TL5,CSI2.2))',SYSTIME(/JULIAN)

 The printed result should look something like:

   09:59:07.00

Note that to do zero-filling for the floating-point seconds, it is necessary to use “TL”
(tab left) and then overwrite the integer portion.

C printf-Style Quoted String Format Code

IDL’s explicitly formatted specifications, which are based on those found in the
FORTRAN language, are extremely powerful and capable of specifying almost any
desired output. However, they require fairly verbose specifications, even in simple
cases. In contrast, the C language (and the many languages influenced by C) have a
different style of format specification used by functions such as printf() and
sprintf(). Most programmers are very familiar with such formats. In this style,
Building IDL Applications Format Codes



188 Chapter 8: Files and Input/Output
text and format codes (prefixed by a % character) are intermixed in a single string.
User-supplied arguments are substituted into the format in place of the format
specifiers. Although less powerful, this style of format is easier to read and write in
common simple cases.

IDL supports the use of printf-style formats within format specifications, using a
special variant of the Quoted String Format Code (discussed in “Quoted String and
“H” Format Codes” on page 179) in which the opening quote starts with a %
character (e.g. %" or %' rather than " or '). The presence of this % before the opening
quote (with no whitespace between them) tells IDL that this is a printf-style quoted
string and not a standard quoted string.

As a simple example, consider the following IDL statement that uses normal quoted
string format codes:

PRINT, FORMAT='("I have ", I0, " monkeys, ", A, ".")', $
23, 'Scott'

Executing this statement yields the output:

I have 23 monkeys, Scott.

Using a printf-style quoted string format code instead, this statement could be
written:

PRINT, FORMAT='(%"I have %d monkeys, %s.")', 23, 'Scott'

These two statements are completely equivalent in their action. In fact, IDL compiles
both into an identical internal representation before processing them.

The printf-style quoted string format codes can be freely mixed with any other
format code, so hybrid formats like the following are allowed:

PRINT, $
FORMAT='(%"I have %d monkeys, %s,", " and ", I0, " parrots.")',$
23, 'Scott', 5

This generates the output:

I have 23 monkeys, Scott, and 5 parrots.

Supported “%” Formats

The following table lists the % format codes allowed within a printf-style quoted
string format code, as well as their correspondence to the standard format codes that
do the same thing. In addition to the format codes described in the table, the special
Format Codes Building IDL Applications



Chapter 8: Files and Input/Output 189
sequence %% causes a single % character to be written to the output. This % is
treated as a regular character instead of as a format code specifier.

As indicated in the above table, there is a one to one correspondence between each
printf-style % format code and one of the normal format codes documented earlier
in this chapter. When reading this table, please keep the following considerations in
mind:

• The %d (or %D) format is identical to the %i (or %I) format. Note that %D
does not correspond to the normal-style D format.

Printf-Style Normal-Style Normal Style Described
in Section

%[w.d]e or %[w.d]E e[w.d] or E[w.d] ““F,” “D,” “E,” and “G”
Format Codes” on page 173

%[w]d or %[w]D

%[w.m]D or %[w.m]D

%[w]i or %[w]I

%[w.m]i or %[w.m]I

I[w]

I[w.d]

I[w]

I[w.d]

““I,” “O,” and “Z” Format
Codes” on page 176

%[w.d]f or %[w.d]F F[w.d] ““F,” “D,” “E,” and “G”
Format Codes” on page 173

%[w.d]g or %[w.d]G g[w.d] or G[w.d] ““F,” “D,” “E,” and “G”
Format Codes” on page 173

%[w]o or %[w]O

%[w.m]o or %[w.m]O

O[w]

O[w.d]

““I,” “O,” and “Z” Format
Codes” on page 176

%[w]s or %[w]S A[w] ““A” Format Code” on
page 172

%[w]x or %[w]X

%[w.m]x or %[w.m]X

%[w]z or %[w]Z

%[w.m]z or %[w.m]Z

Z[w]

Z[w.d]

Z[w]

Z[w.d]

““I,” “O,” and “Z” Format
Codes” on page 176

Table 8-10: Supported “%” Formats
Building IDL Applications Format Codes



190 Chapter 8: Files and Input/Output
• The w, d, and e parameters listed as optional parameters (i.e. between the
square brackets, [ ]) are the same values documented for the normal-style
format codes, and behave identically to them.

• The default value for the w parameters for printf-style formatting is 0,
meaning that printf-style output produces “natural” width by default. For
example, a %d format code corresponds to a normal format code of I0 (not I,
which would use the default value for w based on the data type). Similarly, a
%e format code corresponds to a normal format code of e0 (not e).

• The E and G format codes allow the following styles for compatibility with
FORTRAN:

E[w.dEe] or e[w.dEe]
G[w.dEe] or g[w.dEe]

These styles are not available using the printf-style format codes. In other
words, the following formats are not allowed:

%[w.dEe]E or %[w.dEe]e
%[w.dEe]G or %[w.dEe]g

• Normal-style format codes allow repetition counts (e.g. 5I0). The
printf-style format codes do not allow this. Instead, each printf-style
format code has an implicit repetition count of 1.

• Like normal format codes (but unlike the C language printf() function),
printf-style format codes are allowed to be upper or lower case (e.g. %d and
%D mean the same thing). Whether or not case has an influence on the
resulting output depends on the specific format code. The specific behavior is
the same as with the normal-style version for each code.

Supported “\” Character Escapes

The C programming language allows “escape sequences” that start with the
backslash character, \, to appear within strings. These escapes are used in several
ways:

1. To specify characters that have no printed representation. For example, \n
means linefeed, and \r means carriage return.

2. To remove any special meaning that a character might normally have. For
example, \" allows you to create a string containing a double-quote character
even though double-quote normally delimits a string. Note that backslash can
also be used to escape itself, so "\\" corresponds to a string containing a single
backslash character.
Format Codes Building IDL Applications



Chapter 8: Files and Input/Output 191
3. To introduce arbitrary characters into a string using octal or hexadecimal
notation.

Although IDL does not normally support backslash escapes within strings, the
escapes described in the following table are allowed within printf-style quoted
string format codes. If a character not specified in this table is preceded by a
backslash, the backslash is removed and the character is inserted into the output
without any special interpretation. This means that \" puts a single " character into the
output and that " does not terminate the string constant. Another useful example is
that \% causes a single % character to be placed into the output without starting a
format code. Hence, \% and %% mean the same thing: a single % character with no
special meaning.

Differences Between C printf() and IDL printf-Style Formats

IDL’s printf-style quoted string format code is very similar to a simplified C
language printf() format string. However, there are important differences that an
experienced C programmer should be aware of:

• The IDL PRINT and PRINTF procedures implicitly add an end-of-line
character to the end of the line (unless suppressed by use of the $ format code).
Hence, the use of \n at the end of the format string to end the line is neither
necessary nor recommended.

Escape
Sequence ASCII code

\A \a BEL (7B)

\B \b Backspace (8B)

\F \f Formfeed (12B)

\N \n Linefeed (10B)

\R \r Carriage Return (13B)

\T \t Horizontal Tab (9B)

\V \v Vertical Tab (11B)

\ooo Octal value ooo (Octal value of 1-3 digits)

\xhh Hexadecimal value xx (Hex value of 1-2 digits)

Table 8-11: Supported "\" Character Escapes
Building IDL Applications Format Codes



192 Chapter 8: Files and Input/Output
• Only the % format sequences listed in the table under “Supported “%”
Formats” on page 188 are understood by IDL. Most C printf functions
accept more codes than these, but those codes are not necessary in IDL.

For example, the C printf/scanf functions require the use of the %u format
code to indicate an unsigned value, and also use type modifiers (h, l, ll) to
indicate the size of the data being processed. IDL uses the type of the
arguments being substituted into the format to determine this information.
Therefore, the u, h, l, and ll codes are not required in IDL and are not accepted.

• The % and \ sequences in IDL printf-style strings are case-insensitive. C
printf is case-sensitive (e.g. \n and \N do not both mean the linefeed
character as they do in IDL).

• The C printf function allows the use of %n$d notation to specify that
arguments should be substituted into the format string in a different order than
they are listed. IDL does not support this.

• The C printf function allows the use of %*d notation to indicate that the
field width will be supplied by the next argument, and the argument following
that supplies the actual value. IDL does not support this.

• The C printf function allows the use of %-wd notation to specify that the
data should be left justified in a field of w characters. IDL does not support this
notation.

• IDL printf-style formats allow %z for hexadecimal output as well as %x.
The C printf() function does not understand %z. This deviation from the
usual implementation is allowed by IDL because IDL programmers are used to
treating Z as the hexadecimal format code.

Example: Reading Tables of Formatted Data

IDL explicitly formatted input/output has the power and flexibility to handle almost
any kind of formatted data. A common use of explicitly formatted input/output
involves reading and writing tables of data. Consider a data file containing employee
data records. Each employee has a name (String, 32 columns) and the number of
years they have been employed (Integer, 3 columns) on the first line. The next two
lines contain each employee’s monthly salary for the last twelve months. A sample
file named employee.dat with this format might look like the following:

Bullwinkle                       10
1000.0    9000.97   1100.0                        2000.0
5000.0    3000.0    1000.12   3500.0    6000.0     900.0
Boris                           11
400.0     500.0    1300.10    350.0     745.0    3000.0
Format Codes Building IDL Applications



Chapter 8: Files and Input/Output 193
200.0     100.0     100.0      50.0      60.0       0.25
Natasha                          10
950.0    1050.0    1350.0     410.0     797.0     200.36
2600.0    2000.0    1500.0    2000.0    1000.0     400.0
Rocky                            11
1000.0    9000.0    1100.0       0.0       0.0    2000.37
5000.0    3000.0    1000.01   3500.0    6000.0     900.12

The following IDL statements read data with the above format and produce a
summary of the contents of the file:

;Open data file for input.
OPENR, 1, 'employee.dat'

;Create variables to hold the name, number of years, and monthly
;salary.
name = '' & years = 0 & salary = FLTARR(12)

;Output a heading for the summary.
PRINT, FORMAT='("Name", 28X, "Years", 4X, "Yearly Salary")'

;Note: The actual dashed line is longer than is shown here.
PRINT, '========'

;Loop over each employee.
WHILE (NOT EOF(1)) DO BEGIN

;Read the data on the next employee.
READF, 1, $
FORMAT = '(A32,I3,2(/,6F10.2))', name, years, salary

;Output the employee information. Use TOTAL to sum the monthly
;salaries to get the yearly salary.

PRINT, FORMAT='(A32,I5,5X,F10.2)', name, years, TOTAL(salary)

ENDWHILE

CLOSE, 1

The output from executing these statements on employee.dat is as follows:

Name Years Yearly Salary
======================================================
Bullwinkle 10 32501.09
Borris 11 6805.35
Natasha 10 14257.36
Rocky 11 32500.50
Building IDL Applications Format Codes



194 Chapter 8: Files and Input/Output
Example: Reading Records that Contain Multiple Array
Elements

Frequently, data are written to files with each record containing single elements of
more than one array. One example might be a file consisting of observations of
altitude, pressure, temperature, and velocity with each line or record containing a
value for each of the four variables. Because IDL has no equivalent of the
FORTRAN implied DO list, special procedures must be used to read or write this
type of file.

The first approach, which is the simplest, may be used only if all of the variables have
the same data type. An array is created with as many columns as there are variables
and as many rows as there are elements. The data are read into this array, the array is
transposed storing each variable as a row, and each row is extracted and stored into a
variable which becomes a vector. For example, the FORTRAN program which writes
the data and the IDL program which reads the data are as follows:

FORTRAN Write:

DIMENSION ALT(100),PRES(100),TEMP(100),VELO(100)
OPEN (UNIT = 1, STATUS='NEW', FILE='TEST')
WRITE(1,'(4(1x,g15.5))')

(ALT(I),PRES(I),TEMP(I),VELO(I),I=1,100)

IDL Read:

;Open file for input.
OPENR, 1, 'test'

;Define variable (NVARS by NOBS).
A = FLTARR(4,100)

;Read the data.
READF, 1, A

;Transpose so that columns become rows.
A = TRANSPOSE(A)

;Extract the variables.
ALT = A[*, 0]
PRES = A[*, 1]
TEMP = A[*, 2]
VELO = A[*, 3]

Note that this same example may be written without the implied DO list, writing all
elements for each variable contiguously and simplifying matters considerably:
Format Codes Building IDL Applications



Chapter 8: Files and Input/Output 195
FORTRAN Write:

DIMENSION ALT(100),PRES(100),TEMP(100),VELO(100)
OPEN (UNIT = 1, STATUS='NEW', FILE='TEST')
WRITE (1,'(4(1x,G15.5))') ALT,PRES,TEMP,VELO

IDL Read:

;Define variables.
ALT = FLTARR(100)
PRES = ALT & TEMP = ALT & VELO = ALT
OPENR, 1, 'test'
READF, 1, ALT, PRES, TEMP, VELO

A different approach must be taken when the columns contain different data types or
the number of lines or records are not known. This method involves defining the
arrays, defining a scalar variable to contain each datum in one record, then writing a
loop to read each line into the scalars, and then storing the scalar values into each
array. For example, assume that a fifth variable, the name of an observer which is of
string type, is added to the variable list. The FORTRAN output routine and IDL input
routine are as follows:

FORTRAN Write:

DIMENSION ALT(100),PRES(100),TEMP(100),VELO(100)
CHARACTER * 10 OBS(100)
OPEN (UNIT = 1, STATUS = 'NEW', FILE = 'TEST')
WRITE (1,'(4(1X,G15.5),2X,A)')
(ALT(I),PRES(I),TEMP(I),VELO(I),OBS(I),I=1,100)

IDL Read:

;Access file. Read files containing from 1 to 200 records.
OPENR, 1, 'test'

;Define vector, make it large enough for the biggest case.
ALT = FLTARR(200)

;Define other vectors using the first.
PRES = ALT & TEMP = ALT & VELO = ALT

;Define string array.
OBS = STRARR(200)

;Define scalar string.
OBSS = ''

;Initialize counter.
I = 0
Building IDL Applications Format Codes



196 Chapter 8: Files and Input/Output
WHILE NOT EOF(1) DO BEGIN
;Read scalars.
READF, 1, $

FORMAT = '(4(1X, G15.5), 2X, A10)', $
ALTS, PRESS, TEMPS, VELOS, OBSS

;Store in each vector.
ALT[I] = ALTS & PRES[I] = PRESS & TEMP[I] = TEMPS
VELO[I] = VELOS & OBS[I] = OBSS

;Increment counter and check for too many records.
IF I LT 199 THEN I = I + 1 ELSE STOP, 'Too many records'

ENDWHILE

If desired, after the file has been read and the number of observations is known, the
arrays may be truncated to the correct length using a series of statements similar to
the following:

ALT = ALT[0:I-1]

The above statement represents a worst case example. Reading is greatly simplified
by writing data of the same type contiguously and by knowing the size of the file.
One frequently used technique is to write the number of observations into the first
record so that when reading the data the size is known.

Warning
It might be tempting to implement a loop in IDL which reads the data values
directly into array elements, using a statement such as the following:

FOR I = 0, 99 DO READF, 1, ALT[I], PRES[I], TEMP[I], VELO[I]

This statement is incorrect. Subscripted elements (including ranges) are temporary
expressions passed as values to procedures and functions (READF in this example).
Parameters passed by value do not pass results back to the caller. The proper
approach is to read the data into scalars and assign the values to the individual array
elements as follows:

A = 0. & P = 0. & T = 0. & V = 0.
FOR I = 0, 99 DO BEGIN

READF, 1, A, P, T, V
ALT[I] = A & PRES[I] = P & TEMP[I] = T & VELO[I] = V

ENDFOR
Format Codes Building IDL Applications



Chapter 8: Files and Input/Output 197
Using Unformatted Input/Output

Unformatted input/output involves the direct transfer of data between a file and
memory without conversion to and from a character representation. Unformatted
input/output is used when efficiency is important and portability is not an issue. It is
faster and requires less space than formatted input/output. IDL provides three
procedures for performing unformatted input/output:

READU

Reads unformatted data from the specified file unit.

WRITEU

Writes unformatted data to the specified file unit.

ASSOC

Maps an array structure to a logical file unit, providing efficient and convenient direct
access to data.

This section discusses READU and WRITEU, while ASSOC is discussed in
“Associated Input/Output” on page 209. The READU and WRITEU procedures
provide IDL’s basic unformatted input/output capabilities. They have the form:

READU, Unit, Var1, ..., Varn
WRITEU, Unit, Var1, ..., Varn

where

Unit — The logical file unit with which the input/output operation will be performed.

Vari — One or more IDL variables (or expressions in the case of output).

The WRITEU procedure writes the contents of its arguments directly to the file, and
READU reads exactly the number of bytes required by the size of its arguments. Both
cases directly transfer binary data with no interpretation or formatting.

Unformatted Input/Output of String Variables

Strings are the only basic IDL data type that do not have a fixed size. A string
variable has a dynamic length that is dependent only on the length of the string
currently assigned to it. Thus, although it is always possible to know the length of the
other types, string variables are a special case. IDL uses the following rules to
determine the number of characters to transfer:
Building IDL Applications Using Unformatted Input/Output



198 Chapter 8: Files and Input/Output
Input

Input enough bytes to fill the original length of the string. The length of the resulting
string is truncated if the string contains a null byte.

Output

Output the number of bytes contained in the string. This number is the same number
returned by the STRLEN function and does not include a terminating null byte.

Note that these rules imply that when reading into a string variable from a file, you
must know the length of the original string so as to be able to initialize the destination
string to the correct length. For example, the following IDL statements produce the
following output, because the receiving variable A was not long enough.

;Open a file.
OPENW, 1, 'temp.tmp'

;Write an 11-character string.
WRITEU, 1, 'Hello World'

;Rewind the file.
POINT_LUN, 1, 0

;Prepare a nine-character string.
A = ' '

;Read back in the string.
READU, 1, A

;Show what was input.
PRINT, A

CLOSE, 1

produce the following, because the receiving variable A was not long enough:

Hello Wor

The only solution to this problem is to know the length of the string being input. The
following IDL statements demonstrate a useful “trick” for initializing strings to a
known length:

;Open a file.
OPENW, 1, 'temp.tmp'

;Write an 11-character string.
WRITEU, 1, 'Hello World'
Using Unformatted Input/Output Building IDL Applications



Chapter 8: Files and Input/Output 199
;Rewind the file.
POINT_LUN, 1, 0

;Create a string of the desired length initialized with blanks.
;REPLICATE creates a byte array of 11 elements, each element
;initialized to 32, which is the ASCII code for a blank. Passing
;this byte array to STRING converts it to a scalar string
;containing 11 blanks.
A = STRING(REPLICATE(32B,11))

;Read in the string.
READU, 1, A

;Show what was input.
PRINT, A

CLOSE, 1

This example takes advantage of the special way in which the BYTE and STRING
functions convert between byte arrays and strings. See the description of the BYTE
and STRING functions for additional details.

Example: Reading C-Generated Unformatted Data with IDL

The following C program produces a file containing employee records. Each record
stores the first name of each employee, the number of years he has been employed,
and his salary history for the last 12 months.

#include <stdio.h>

main()
{

static struct rec {
char name[32]; /* Employee's name */
int years;     /* # of years with company */
float salary[12]; /* Salary for last 12 months */

} employees[] = {
{ {'B','u','l','l','w','i','n','k','l','e'}, 10,

{1000.0, 9000.97, 1100.0, 0.0, 0.0, 2000.0,
5000.0, 3000.0, 1000.12, 3500.0, 6000.0, 900.0} },{

{'B','o','r','r','i','s'}, 11,
{400.0, 500.0, 1300.10, 350.0, 745.0, 3000.0,

200.0, 100.0, 100.0, 50.0, 60.0, 0.25} },
{ {'N','a','t','a','s','h','a'}, 10,

{950.0, 1050.0, 1350.0, 410.0, 797.0, 200.36,
2600.0, 2000.0, 1500.0, 2000.0, 1000.0, 400.0} },

{ {'R','o','c','k','y'}, 11,
{1000.0, 9000.0, 1100.0, 0.0, 0.0, 2000.37,
Building IDL Applications Using Unformatted Input/Output



200 Chapter 8: Files and Input/Output
5000.0, 3000.0, 1000.01, 3500.0, 6000.0, 900.12}}
};

FILE *outfile;

outfile = fopen("data.dat", "w");
(void) fwrite(employees, sizeof(employees), 1, outfile);
(void) fclose(outfile);

}

Running this program creates the file data.dat containing the employee records. The
following IDL statements can be used to read and print this file:

;Create a string with 32 characters so that the proper number of
;characters will be input from the file. REPLICATE is used to
;create a byte array of 32 elements, each containing the ASCII code
;for a space (32). STRING turns this byte array into a string
;containing 32 blanks.
STR32 = STRING(REPLICATE(32B, 32))

;Create an array of four employee records to receive the input
;data.
A = REPLICATE({EMPLOYEES, NAME:STR32, YEARS:0L, $

SALARY:FLTARR(12)}, 4)

;Open the file for input.
OPENR, 1, 'data.dat'

;Read the data.
READU, 1, A

CLOSE, 1

;Show the results.
PRINT, A

Executing these IDL statements produces the following output:

{ Bullwinkle          10
1000.00 9000.97 1100.00 0.00000 0.00000 2000.00
5000.00 3000.00 1000.12 3500.00 6000.00 900.000
}{Borris 11
400.000 500.000 1300.10 350.000 745.000 3000.00
200.000 100.000 100.000 50.0000 60.0000 0.250000
}{ Natasha 10
950.000 1050.00 1350.00 410.000 797.000 200.360
2600.00 2000.00 1500.00 2000.00 1000.00 400.000
}{ Rocky 11
1000.00 9000.00 1100.00 0.00000 0.00000 2000.37
5000.00 3000.00 1000.01 3500.00 6000.00 900.120
}

Using Unformatted Input/Output Building IDL Applications



Chapter 8: Files and Input/Output 201
Example: Reading IDL-Generated Unformatted Data with C

The following IDL program creates an unformatted data file containing a 5 x 5 array
of floating-point values:

;Open a file for output.
OPENW, 1, 'data.dat'

;Write 5x5 array with each element set to its 1-dimensional index.
WRITEU, 1, FINDGEN(5, 5)

CLOSE, 1

This file can be read and printed by the following C program:

#include <stdio.h>

main()
{

float data[5][5];
FILE *infile; int i, j;
infile = fopen("data.dat", "r");
(void) fread(data, sizeof(data), 1, infile);
(void) fclose(infile);
for (i = 0; i < 5; i++) {

for (j = 0; j < 5; j++) {
printf("%8.1f", data[i][j]);
printf("\n");

}
}

}

Running this program gives the following output:

0.0 1.0     2.0     3.0     4.0
5.0 6.0     7.0     8.0     9.0
10.0 11.0    12.0    13.0    14.0
15.0 16.0    17.0    18.0    19.0
20.0 21.0    22.0    23.0    24.0

Example: Reading a Sun Rasterfile from IDL

Sun computers use rasterfiles to store scanned images. This example shows how to
read such an image and display it using IDL. In the interest of keeping the example
brief, a number of simplifications are made, no error checking is performed, and only
8-bit deep rasterfiles are handled. See the READ_SRF procedure (the file
read_srf.pro in the lib subdirectory of the IDL distribution) for a complete
Building IDL Applications Using Unformatted Input/Output



202 Chapter 8: Files and Input/Output
example. The format used for rasterfiles is documented in the C header file
/usr/include/rasterfile.h. That file provides the following information:

Each file starts with a fixed header that describes the image. In C, this header is
defined as follows:

struct rasterfile{
int ras_magic; /* magic number */
int ras_width; /* width (pixels) of image */
int ras_height; /* height (pixels) of image */
int ras_depth; /* depth (1, 8, or 24 bits) */
int ras_length; /* length (bytes) of image */
int ras_type; /* type of file */
int ras_maptype; /* type of colormap */
int ras_maplength; /* length(bytes) of colormap */ };

The color map, if any, follows directly after the header information. The image data
follows directly after the color map.

The following IDL statements read an 8-bit deep image from the file ras.dat:

;Define IDL structure that matches the Sun-defined rasterfile
;structure. A C int variable on a Sun corresponds to an IDL LONG
;int.
h = {rasterfile, magic:0L, width:0L, height:0L, depth: 0L,$

length:0L, type:0L, maptype:0L, maplength:0L}

;Open the file, allocating a file unit at the same time.
OPENR, unit, file, /GET_LUN

;Read the header information.
READU, unit, h

;Is there a color map?
IF ((h.maptype EQ 1) AND (h.maplength NE 0) ) THEN BEGIN

;Calculate length of each vector.
maplen = h.maplength/3

;Create three byte vectors to hold the color map.
r=(g=(b=BYTARR(maplen, /NOZERO)))

;Read the color map.
READU, unit, r, g, b

ENDIF

;Create a byte array to hold image.
image = BYTARR(h.width, h.height, /NOZERO)
Using Unformatted Input/Output Building IDL Applications



Chapter 8: Files and Input/Output 203
;Read the image.
READU, unit, image

;Free the previously-allocated Logical Unit Number and close the
;file.
FREE_LUN, unit
Building IDL Applications Using Unformatted Input/Output



204 Chapter 8: Files and Input/Output
Portable Unformatted Input/Output

Normally, unformatted input/output is not portable between different machine
architectures because of differences in the way various machines represent binary
data. However, it is possible to produce binary files that are portable by specifying
the XDR keyword with the OPEN procedures. XDR (for eXternal Data
Representation) is a scheme under which all binary data is written using a standard
“canonical” representation. All machines supporting XDR understand this standard
representation and have the ability to convert between it and their own internal
representation.

XDR represents a compromise between the extremes of unformatted and formatted
input/output:

• It is not as efficient as purely unformatted input/output because it does involve
the overhead of converting between the external and internal binary
representations.

• It is still much more efficient than formatted input/output because conversion
to and from ASCII characters is much more involved than converting between
binary representations.

• It is much more portable than purely unformatted data, although it is still
limited to those machines that support XDR. However, XDR is freely
available and can be moved to any system.

XDR Considerations

The primary differences in the way IDL input/output procedures work with XDR
files, as opposed to files opened normally are as follows:

• To use XDR, you must specify the XDR keyword when opening the file.

• The only input/output data transfer routines that can be used with a file opened
for XDR are READU and WRITEU.

• XDR converts between the internal and standard external binary
representations for data instead of simply using the machine’s internal
representation.

• Since XDR adds extra “bookkeeping” information to data stored in the file and
because the binary representation used may not agree with that of the machine
being used, it does not make sense to access an XDR file without using XDR.
Portable Unformatted Input/Output Building IDL Applications



Chapter 8: Files and Input/Output 205
• OPENW and OPENU normally open files for both input and output. However,
XDR files can only be opened in one direction at a time. Thus, using these
procedures with the XDR keyword results in a file open for output only.
OPENR works in the usual way.

• The length of strings is saved and restored along with the string. This means
that you do not have to initialize a string of the correct length before reading a
string from the XDR file. (This is necessary with normal unformatted
input/output and is described in “Using Unformatted Input/Output” on
page 197).

• For efficiency reasons, byte arrays are transferred as a single unit; therefore,
byte variables must be initialized to the correct number of elements for the data
to be input, or an error will occur. For example, given the statements,

;Open a file for XDR output.
OPENW, /XDR, 1, 'data.dat'

;Write a 10-element byte array.
WRITEU, 1, BINDGEN(10)

;Close the file and re-open it for input.
CLOSE, 1 & OPENR, /XDR, 1, 'data.dat'

then the statement,

;Try to read the first byte only.
B = 0B & READU, 1, B

results in the following error:

% READU: Error encountered reading from file unit: 1.

Instead, it is necessary to read the entire byte array back in one operation using
a statement such as:

;Read the whole array back at once.
B=BYTARR(10) & READU, 1, B

This restriction does not exist for other data types.

• Under VMS, XDR is only possible with stream mode files.

IDL XDR Conventions for Programmers

IDL uses certain conventions for reading and writing XDR files. If your only use of
XDR is through IDL, you do not need to be concerned about these conventions
because IDL takes care of it for you. However, programmers who want to create
IDL-compatible XDR files from other languages need to know the actual XDR
Building IDL Applications Portable Unformatted Input/Output



206 Chapter 8: Files and Input/Output
routines used by IDL for various data types. The following table summarizes this
information.

The routines used for type COMPLEX, DCOMPLEX, and STRING are not primitive
XDR routines. Their definitions are as follows:

bool_t xdr_complex(xdrs, p)
XDR *xdrs;
struct complex { float r, i} *p;

{
return(xdr_float(xdrs, (char *) &p->r) &&

xdr_float(xdrs, (char *) &p->i));
}
bool_t xdr_dcomplex(xdrs, p)

XDR *xdrs;
struct dcomplex { double r, i} *p;

{
return(xdr_double(xdrs, (char *) &p->r) &&

xdr_double(xdrs, (char *) &p->i));
}
bool_t xdr_counted_string(xdrs, p)

XDR *xdrs;

Data Type XDR routine

Byte xdr_bytes()

Integer xdr_short()

Long xdr_long()

Float xdr_float()

Double xdr_double()

Complex xdr_complex()

String xdr_counted_string()

Double Complex xdr_dcomplex()

Unsigned Integer xdr_u_short()

Unsigned Long xdr_u_long()

64-bit Integer xdr_long_long_t()

Unsigned 64-bit Integer xdr_u_long_long_t()

Table 8-12: XDR Routines Used by IDL
Portable Unformatted Input/Output Building IDL Applications



Chapter 8: Files and Input/Output 207
char **p;
{

int input = (xdrs->x_op == XDR_DECODE);
short length;

/* If writing, obtain the length */
if (!input) length = strlen(*p);

/* Transfer the string length */
if (!xdr_short(xdrs, (char *) &length)) return(FALSE);

/* If reading, obtain room for the string */
if (input)
{

*p = malloc((unsigned) (length + 1));
*p[length] = '\0'; /* Null termination */

}
/* If the string length is nonzero, transfer it */
return(length ? xdr_string(xdrs, p, length) : TRUE);

}

Example: Reading C-Generated XDR Data with IDL

The following C program produces a file containing different types of data using
XDR. The usual error checking is omitted for the sake of brevity.

#include <stdio.h>
#include <rpc/rpc.h>
[ xdr_complex() and xdr_counted_string() included here ]

main()
{

static struct {/* Output data */
unsigned char c;
short s;
long l;
float f;
double d;
struct complex { float r, i } cmp;
char *str;

}
data = {1, 2, 3, 4, 5.0, { 6.0, 7.0}, "Hello" };
u_int c_len = sizeof(unsigned char); /* Length of a char */
char *c_data = (char *) &data.c;     /* Addr of byte field */
FILE *outfile;                       /* stdio stream ptr */
XDR xdrs;                            /* XDR handle */

/* Open stdio stream and XDR handle */
outfile = fopen("data.dat", "w");
Building IDL Applications Portable Unformatted Input/Output



208 Chapter 8: Files and Input/Output
xdrstdio_create(&xdrs, outfile, XDR_ENCODE);

/* Output the data */
(void) xdr_bytes(&xdrs, &c_data, &c_len, c_len);
(void) xdr_short(&xdrs, (char *) &data.s);
(void) xdr_long(&xdrs, (char *) &data.l);
(void) xdr_float(&xdrs, (char *) &data.f);
(void) xdr_double(&xdrs, (char *) &data.d);
(void) xdr_complex(&xdrs, (char *) &data.cmp);
(void) xdr_counted_string(&xdrs, &data.str);

/* Close XDR handle and stdio stream */
xdr_destroy(&xdrs);
(void) fclose(outfile);

}

Running this program creates the file data.dat containing the XDR data. The
following IDL statements can be used to read this file and print its contents:

;Create structure containing correct types.
DATA={S, C:0B, S:0, L:0L, F:0.0, D:0.0D, CMP:COMPLEX(0), STR:''}

;Open the file for input.
OPENR, /XDR, 1, 'data.dat'

;Read the data.
READU, 1, DATA

;Close the file.
CLOSE, 1

;Show the results.
PRINT, DATA

Executing these IDL statements produces the output:

{   1       2           3      4.00000       5.0000000
(      6.00000,      7.00000) Hello}

For further details about XDR, consult the XDR documentation for your machine.
Sun users should consult their Network Programming manual.
Portable Unformatted Input/Output Building IDL Applications



Chapter 8: Files and Input/Output 209
Associated Input/Output

Unformatted data stored in files often consists of a repetitive series of arrays or
structures. A common example is a series of images. IDL-associated file variables
offer a convenient and efficient way to access such data.

An associated variable is a variable that maps the structure of an IDL array or
structure variable onto the contents of a file. The file is treated as an array of these
repeating units of data. The first array or structure in the file has an index of zero, the
second has index one, and so on. Such variables do not keep data in memory like a
normal variable. Instead, when an associated variable is subscripted with the index of
the desired array or structure within the file, IDL performs the input/output operation
required to access the data.

When their use is appropriate (the file consists of a sequence of identical arrays or
structures), associated file variables offer the following advantages over READU and
WRITEU for unformatted input/output:

• Input/output occurs when an associated file variable is subscripted. Thus, it is
possible to perform input/output within an expression without a separate
input/output statement.

• The size of the data set is limited primarily by the maximum size of the file
containing the data instead of the maximum memory available. Data sets too
large for memory can be accessed.

• There is no need to declare the maximum number of arrays or structures
contained in the file.

• Associated variables systematize access to the data. Direct access to any
element in the file is rapid and simple—there is no need to calculate offsets
into the file and/or position the file pointer prior to performing the input/output
operation.

• Associated variables are the most efficient form of IDL input/output.

An associated file variable is created by assigning the result of the ASSOC function
to a variable. See ASSOC in the IDL Reference Guide for details.

Example of Using Associated Input/Output

Assume that a file named data.dat exists, and that this file contains a series of 10 x 20
arrays of floating-point data. The following two IDL statements open the file and
create an associated file variable mapped to the file:
Building IDL Applications Associated Input/Output



210 Chapter 8: Files and Input/Output
;Open the file.
OPENU, 1, 'data.dat'

;Make a file variable. Using the NOZERO keyword with FLTARR
;increases efficiency.
A = ASSOC(1, FLTARR(10, 20, /NOZERO))

The order of these two statements is not important—it would be equally valid to call
ASSOC first, and then open the file. This is because the association is between the
variable and the logical file unit, not the file itself. It is also legitimate to close the
file, open a new file using the same LUN, and then use the associated variable
without first executing a new ASSOC. Naturally, an error occurs if the file is not
open when the file variable is subscripted in an expression or if the file is open for the
wrong type of access (for example, trying to assign to an associated file variable
linked with a file opened for read-only access).

As a result of executing the two statements above, the variable A is now an associated
file variable. Executing the statement,

HELP, A

gives the following response:

A               FLOAT     = File<data.dat> Array(10, 20)

The associated variable A maps the structure of a 10 x 20, floating-point array onto
the contents of the file data.dat. Thus, the response from the HELP procedure shows
it as having the structure of a two-dimensional array. An associated file variable only
performs input/output to the file when it is subscripted. Thus, the following two IDL
statements do not cause input/output to happen:

B = A

This assignment does not transfer data from the file to variable B because A is not
subscripted. Instead, B becomes an associated file variable with the same structure,
and to the same logical file unit, as A.

B = 23

This assignment does not result in the value 23 being transferred to the file because
variable B (which became a file variable in the previous statement) is not subscripted.
Instead, B becomes a scalar integer variable containing the value 23. It is no longer an
associated file variable.

Reading Data from Associated Files

Once a variable has been associated with a file, data are read from the file whenever
the associated variable appears in an expression with a subscript. The position of the
Associated Input/Output Building IDL Applications



Chapter 8: Files and Input/Output 211
array or structure read from the file is given by the value of the subscript. The
following IDL statements give some examples of using file variables:

;Copy the contents of the first array into normal variable Z. Z is
;now a 10 x 20, floating-point array.
Z = A[0]

;Form the sum of the first 10 arrays (Z was initialized in the
;previous statement to the value of the first array. This statement
;adds the following nine to it.).
FOR I = 1, 9 DO Z = Z + A[I]

;Read fourth array and plot it.
PLOT, A[3]

;Subtract array four from array five, and plot the result. The
;result of the subtraction is then discarded.
PLOT, A[5] - A[4]

Subscripting Associated File Variables on Input

When the structure associated with a file variable is an array, it is possible to
subscript into the array being accessed during input operations. For example, for the
variable A defined above,

Z = A[0, 0, 1]

assigns the value of the first floating-point element of the second array within the file
to the variable Z. The rightmost subscript is taken as the subscript into the file
causing IDL to read the entire array into memory. This resulting array expression is
then further subscripted by the remaining subscripts.

Note
Although this ability can be convenient, it also can be very slow because every
access to an array element causes the entire array to be read from memory. Unless
only one element of the array is desired, it is faster to assign the contents of the
array to a normal variable by subscripting the file variable with a single subscript,
then accessing the individual array elements in the normal variable.

Writing Data

When a subscripted associated variable appears on the left side of an assignment
statement, the expression on the right side is written into the file at the given array
position:
Building IDL Applications Associated Input/Output



212 Chapter 8: Files and Input/Output
;Sets sixth record to zero.
A[5] = FLTARR(10, 20)

;Write ARR into sixth record after any necessary type conversions.
A[5] = ARR

;Averages records J and J+1, and writes the result into record J.
A[J] = (A[J] + A[J + 1])/2

When writing data, only a single subscript specifying the index of the affected array
or structure in the file is allowed. Thus, it is not possible to index individual elements
of associated arrays on output, although it is allowed for input. To update individual
elements of an array within a file, assign the contents of that array to a normal array
variable, modify the copy, and write the array back by assigning it to the subscripted
file variable.

Files with Multiple Structures

The same file may be associated with a number of different structures. Assume a
number of 128 x 128-byte images are contained on a file. The statement,

ROW = ASSOC(1, BYTARR(128))

will map the file into rows of 128 bytes each. ROW[3] is the fourth row of the first
image, while ROW[128] is the first row of the second image. The statement,

IMAGE = ASSOC(1, BYTARR(128, 128))

maps the file into entire images; IMAGE[4] will be the fifth image.

Offset Parameter

The Offset parameter to ASSOC specifies the position in the file at which the first
array starts. This parameter is useful when a file contains a header followed by data
records. For example, if a UNIX file uses the first 1,024 bytes of the file to contain
header information, followed by 512 x 512-byte images, the statement,

IMAGE = ASSOC(1, BYTARR(512, 512), 1024)

sets the variable IMAGE to access the images while skipping the header.

Under VMS, stream files and RMS block mode files have their offset given in bytes,
and record-oriented files have it specified in records. Thus, the example above would
have worked for VMS if the file was a stream or block mode file. Assume however,
that the file has 512-byte, fixed-length records. In this case, skipping the first 1,024
bytes is equivalent to skipping the first two records:

IMAGE = ASSOC(1, BYTARR(512, 512), 2)
Associated Input/Output Building IDL Applications



Chapter 8: Files and Input/Output 213
Efficiency

Arrays are accessed most efficiently if their length is an integer multiple of the
physical block size of the disk holding the file. Common values are 512, 1,024, and
2,048 bytes. For example, on a disk with 512-byte blocks, one benchmark program
required approximately one-eighth of the time required to read a 512 x 512-byte
image that started and ended on a block boundary, as compared to a similar program
that read an image that was not stored on even block boundaries.

Each time a subscripted associated variable is referenced, one or more records are
read from or written to the file. Therefore, if a record is to be accessed more than a
few times, it is more efficient to read the entire record into a variable. After making
the required changes to the in-memory variable, it can be written back to the file if
necessary.

Unformatted Data from UNIX FORTRAN Programs

Unformatted data files generated by FORTRAN programs under UNIX contain an
extra long word before and after each logical record in the file. ASSOC does not
interpret these extra bytes but considers them to be part of the data. This is true even
if the F77_UNFORMATTED keyword is specified on the OPEN statement.
Therefore, ASSOC should not be used with such files. Instead, such files should be
processed using READU and WRITEU. An example of using IDL to read such data
is given in “Using Unformatted Input/Output” on page 197.
Building IDL Applications Associated Input/Output



214 Chapter 8: Files and Input/Output
File Manipulation Operations

Locating Files

The FINDFILE function returns an array of strings containing the names of all files
that match its argument string. The argument string may contain any wildcard
characters understood by the command interpreter. Under VMS, this is DCL. Under
UNIX, it is the Bourne shell (/bin/sh). Under Windows it is COMMAND.COM. On
the Macintosh, standard Macintosh OS wildcard characters are supported. For
example, to determine the number of IDL procedure files that exist in the current
directory, use the following statement:

PRINT, '# IDL pro files:',N_ELEMENTS(FINDFILE('*.pro'))

See FINDFILE in the IDL Reference Guide for details.

IDL File Handling Routines

IDL file handling routines are listed in the following table:

Changing File Access Permissions

The FILE_CHMOD procedure allows the user to change the current access
permissions (also referred to as modes) associated with a file or directory. File modes
are specified using the standard Posix convention of three protection classes (user,
group, other), each containing three attributes (read, write, execute). This is the same

File Handling Routine Description

FILE_CHMOD Allows you to change file access permissions.

FILE_DELETE Allows you to delete files and empty directories.

FILE_EXPAND_PATH Fully qualifies file and directory paths.

FILE_MKDIR Creates directories.

FILE_TEST Tests a file or directory for existence and other
specific attributes.

FILE_WHICH Searches for a specified file in a directory search
path.

Table 8-13: IDL File Handling Routines
File Manipulation Operations Building IDL Applications



Chapter 8: Files and Input/Output 215
format familiar to users of the UNIX chmod(1) command. For example, to make the
file moose.dat read-only to everyone except the owner of the file, but otherwise not
change any other settings:

FILE_CHMOD, 'moose.dat', /u_write, g_write=0, o_write=0

To make the file be readable and writable to the owner and group, but read-only to
anyone else, and remove any other modes:

FILE_CHMOD, 'moose.dat', '664'o

To find the current protection settings for a given file, you can use the GET_MODE
keyword to the FILE_TEST function.

See FILE_CHMOD in the IDL Reference Guide for details.

Deleting Files and Empty Directories

The FILE_DELETE procedure allows a user to delete files and empty directories for
which they have appropriate permission. The process must have the necessary
permissions to remove the file, as defined by the current operating system.
FILE_CHMOD can be used to change file protection settings.

Microsoft Windows users should be careful to not specify a trailing backslash at the
end of a specification. For example:

FILE_DELETE, 'c:\mydir\myfile'

and not:

FILE_DELETE, 'c:\mydir\myfile\'

VMS users should remember that the syntax for creating a subdirectory (as with the
CREATE/DIRECTORY DCL command) is not symmetric with that used to delete it
(with the DELETE,/DIRECTORY). FILE_DELETE follows the same rules. For
instance, to create a subdirectory of the current working directory named
bullwinkle and then remove it:

FILE_MKDIR,'[.bullwinkle]'
FILE_DELETE,'bullwinkle.dir'

See FILE_DELETE in the IDL Reference Guide for details.

Expanding Files and Directory Paths

The FILE_EXPAND_PATH function can be used with a given a file or directory
name to convert the name to its fully qualified form and return it. A fully-qualified
Building IDL Applications File Manipulation Operations



216 Chapter 8: Files and Input/Output
file path completely specifies the location of a file without the need to consider the
user’s current working directory.

Note
This routine should be used only to make sure that file paths are fully qualified, but
not to expand wildcard characters (e.g. *). The behavior of FILE_EXPAND_PATH
when it encounters a wildcard is platform dependent, differs between platforms, and
should not depended on. These differences are due to the underlying operating
system, and are beyond the control of IDL. To expand the wildcard and obtain fully
qualified paths, combine the FINDFILE function with FILE_EXPAND_PATH:

A = FILE_EXPAND_PATH(FINDFILE('*.pro'))

See FILE_EXPAND_PATH in the IDL Reference Guide for details.

Creating Directories

You can create a directory using the FILE_MKDIR procedure. The resulting
directory or directories are created with default access permissions for the current
process. If needed, you can use the FILE_CHMOD procedure to alter access
permissions. If a specified directory has non-existent parent directories,
FILE_MKDIR automatically creates all the intermediate directories as well. For
instance, to create a subdirectory named moose in the current working directory on
the Macintosh, Unix, or Windows operating systems:

FILE_MKDIR, 'moose'

To do the same thing under VMS:

FILE_MKDIR, '[.moose]'

See FILE_MKDIR in the IDL Reference Guide for details.

Testing for a File’s Existence

The FILE_TEST function allows you to determine if a file exists without having to
open it. Additionally, using the FILE_TEST keywords provides information about
the file’s attributes. For example, to determine whether your IDL distribution
supports the SGI Irix operating system:

result = FILE_TEST(!DIR + '/bin/bin.sgi', /DIRECTORY)
PRINT, 'SGI IDL Installed: ', result ? 'yes' : 'no'

See FILE_TEST in the IDL Reference Guide for details.
File Manipulation Operations Building IDL Applications



Chapter 8: Files and Input/Output 217
Searching for a Specific File

The FILE_WHICH function separates a specified file path into its component
directories, and searches each directory in turn. If a directory contains the file, the full
name of that file including the directory path is returned. If FILE_WHICH does not
find the desired file, a NULL string is returned.

This command is modeled after the UNIX which(1) command, but is written in the
IDL language and is available on all platforms. Its source code can be found in the
file file_which.pro in the lib subdirectory of the IDL distribution.

As an example, the following line of code allows you to find the location of the
file_which.pro file:

Result = FILE_WHICH('file_which.pro')

Alternately, to find the location of the UNIX ls command:

Result = FILE_WHICH(getenv('PATH'), 'ls')

See FILE_WHICH in the IDL Reference Guide for details.

Getting Help and Information

Information about currently open file units is available by using the FILES keyword
with the HELP procedure. If no arguments are provided, information about all
currently open user file units (units 1–128) is given. For example, the following
command can be used to get information about the three special units (−2, −1, and 0):

HELP, /FILES, -2, -1, 0

This command results in output similar to the following:

Unit Attributes Name
-2 Write, New, Tty, Reserved <stderr>
-1 Write, New, Tty, Reserved <stdout>
0 Read, Tty, Reserved  <stdin>

See HELP in the IDL Reference Guide for details.

The FSTAT Function

The FSTAT function can be used to get more detailed information, as well as
information that can be used from within an IDL program. It returns a structure
expression of type FSTAT or FSTAT64 containing information about the file. For
example, to get detailed information about the standard input, use the following
command:
Building IDL Applications File Manipulation Operations



218 Chapter 8: Files and Input/Output
HELP, /STRUCTURES, FSTAT(0)

This displays the following information:

** Structure FSTAT, 17 tags, length=64:
UNIT LONG 0
NAME STRING '<stdin>'
OPEN BYTE 1
ISATTY BYTE 0
ISAGUI BYTE 1
INTERACTIVE BYTE 1
XDR BYTE 0
COMPRESS BYTE 0
READ BYTE 1
WRITE BYTE 0
ATIME LONG64 0
CTIME LONG64 0
MTIME LONG64 0
TRANSFER_COUNT LONG 0
CUR_PTR LONG 0
SIZE LONG 0
REC_LEN LONG 0

On some platforms, IDL can support files that are longer than 2^31-1 bytes in length.
If FSTAT is applied to such a file, it returns an expression of type FSTAT64 instead
of the FSTAT structure shown above. FSTAT64 differs from FSTAT only in that the
TRANSFER_COUNT, CUR_PTR, SIZE, and REC_LEN fields are signed 64-bit
integers (type LONG64) in order to be able to represent the larger sizes.

The fields of the FSTAT and FSTAT64 structures provide various information about
the file, such as the size of the file, and the dates of last access, creation, and last
modification. For more information on the fields of the FSTAT and FSTAT64
structures, see FSTAT in the IDL Reference Guide.

An Example Using FSTAT

The following IDL function can be used to read single-precision, floating-point data
from a stream file into a vector when the number of elements in the file is not known.
It uses the FSTAT function to get the size of the file in bytes and divides by four (the
size of a single-precision, floating-point value) to determine the number of values.
Note that this approach will not work with VMS variable-length record files:

;READ_DATA reads all the floating point values from a stream file
;and returns the result as a floating-point vector.
FUNCTION READ_DATA, file

;Get a unique file unit and open the data file.
OPENR, /GET_LUN, unit, file
File Manipulation Operations Building IDL Applications



Chapter 8: Files and Input/Output 219
;Get file status.
status = FSTAT(unit)

;Make an array to hold the input data. The SIZE field of status
;gives the number of bytes in the file, and single-precision,
;floating-point values are four bytes each.
data = FLTARR(status.size / 4)

;Read the data.
READU, unit, data

;Deallocate the file unit. The file also will be closed.
FREE_LUN, unit

RETURN, data

END

Assuming that a file named data.dat exists and contains 10 floating-point values,
the READ_DATA function could be used as follows:

;Read floating-point values from data.dat.
A = READ_DATA('data.dat')

;Show the result.
HELP, A

The following output is produced:

A               FLOAT     = Array(10)

Flushing File Units

For efficiency, IDL buffers its input/output in memory. Therefore, when data are
output, there is a window of time during which data are in memory and have not been
actually placed into the file. Normally, this behavior is transparent to the user (except
for the improved performance). The FLUSH routine exists for those rare occasions
where a program needs to be certain that the data has actually been written to the file
immediately. For example, use the statement,

FLUSH, 1

to flush file unit one.

See FLUSH in the IDL Reference Guide for details.
Building IDL Applications File Manipulation Operations



220 Chapter 8: Files and Input/Output
Positioning File Pointers

Each open file unit has a current file pointer associated with it. This file pointer
indicates the position in the file at which the next input/output operation will take
place. The file position is specified as the number of bytes from the start of the file.
The first position in the file is position zero. The following statement will rewind file
unit 1 to its start:

POINT_LUN, 1, 0

The following sequence of statements will position it at the end of the file:

tmp = FSTAT(1)
POINT_LUN, 1, tmp.size

POINT_LUN has the following operating-system specific behavior:

• UNIX: the current file pointer can be positioned arbitrarily – moving to a
position beyond the current end-of-file causes the file to grow out to that point.
The gap created is filled with zeroes.

• VMS stream files: the current file pointer can be positioned arbitrarily –
moving to a position beyond the current end-of-file causes the file to grow out
to that point. The gap created is filled with zeroes.

• VMS block mode and record-oriented files: attempting to move the pointer
past the current end-of-file causes an end-of-file error.

• VMS record-oriented files: the file pointer should only be set to record
boundaries. Setting it to other positions can result in unexpected behavior.

• Windows: the current file pointer can be positioned arbitrarily – moving to a
position beyond the current end-of-file causes the file to grow out to that point.
Unlike UNIX, the gap created is filled with arbitrary data instead of zeroes.

• Macintosh: the current file pointer cannot be positioned past the end of the
file.

See POINT_LUN in the IDL Reference Guide for details.

Testing for End-Of-File

The EOF function is used to test a file unit to see if it is currently positioned at the
end of the file. It returns true (1) if the end-of-file condition is true and false (0)
otherwise.

Note that under VMS, non-sequential files or files opened across DECnet always
return “false”.
File Manipulation Operations Building IDL Applications



Chapter 8: Files and Input/Output 221
For example, to read the contents of a file and print it on the screen, use the following
statements:

;Open file demo.doc for reading.
OPENR, 1, 'demo.doc'

;Create a variable of type string.
LINE = ''

;Read and print each line until the end of the file is encountered.
WHILE(NOT EOF(1)) DO BEGIN READF,1,LINE & PRINT,LINE & END

;Done with the file.
CLOSE, 1

See EOF in the IDL Reference Guide for details.

GET_KBRD

The GET_KBRD function returns the next character available from the standard
input (IDL file unit zero) as a single character string. It takes a single parameter
named WAIT. If WAIT is zero, the function returns the null string if there are no
characters in the terminal typeahead buffer. If it is nonzero, the function waits for a
character to be typed before returning.

Under Windows, the GET_KBRD function can be used to return Windows special
characters (in addition to the standard keyboard characters). To get a special
character, hold down the Alt key and type the character’s ANSI equivalent on the
numeric keypad while GET_KBRD is waiting. Control + key combinations are not
supported.

See GET_KBRD in the IDL Reference Guide for details.

Note
RSI recommends the use of a GUI interface (e.g. WIDGET_BUTTON) instead of
GET_KBRD where possible.

Example—Using GET_KBRD

A procedure that updates the screen and exits when the carriage return is typed might
appear as follows:

;Procedure definition.
PRO UPDATE, ...

;Loop forever.
Building IDL Applications File Manipulation Operations



222 Chapter 8: Files and Input/Output
WHILE 1 DO BEGIN

;Update screen here...
...

;Read character, no wait.
CASE GET_KBRD(0) OF

;Process letter A.
'A': ....

;Process letter B.
'B': ....

;Process other alternatives.
...

;Exit on carriage return (ASCII code = 15 octal).
STRING("15B): RETURN

;Ignore all other characters.
ELSE:

ENDCASE

ENDWHILE

;End of procedure.
END

Using the STRING Function to Format Data

The STRING function is very similar to the PRINT and PRINTF procedures. It can
be thought of as a version of PRINT that places its formatted output into a string
variable instead of a file. If the output is a single line, the result is a scalar string. If
the output has multiple lines, the result is a string array with each element of the array
containing a single line of the output.

Example—Using STRING with Explicit Formatting

The IDL statements:

;Produce a string array.
A=STRING(FORMAT='("The values are:", /, (I))', INDGEN(5))

;Show its structure.
HELP, A
File Manipulation Operations Building IDL Applications



Chapter 8: Files and Input/Output 223
;Print out the result.
FOR I = 0, 5 DO PRINT, A[I]

produce the following output:

A               STRING    = Array(6)
The values are:

0
1
2
3
4

See STRING in the IDL Reference Guide for details.

Reading Data from a String Variable

The READS procedure performs formatted input from a string variable and writes
the results into one or more output variables. This procedure differs from the READ
procedure only in that the input comes from memory instead of a file.

This routine is useful when you need to examine the format of a data file before
reading the information it contains. Each line of the file can be read into a string using
READF. Then the components of that line can be read into variables using READS.

See the description of READS in the IDL Reference Guide for more details.
Building IDL Applications File Manipulation Operations



224 Chapter 8: Files and Input/Output
UNIX-Specific Information

UNIX offers only a single type of file. All files are considered to be an uninterpreted
stream of bytes, and there is no such thing as record structure at the operating system
level. (By convention, records of text are simply terminated by the linefeed character,
which is referred to as “newline.”) It is possible to move the current file pointer to
any arbitrary position in the file and to begin reading or writing data at that point.
This simplicity and generality form a system in which any type of file can be
manipulated easily using a small set of file operations.

Reading FORTRAN-Generated Unformatted Data with IDL

The UNIX file system considers all files to be an uninterpreted stream of bytes.
Standard FORTRAN I/O considers all input/output to be done in terms of logical
records.

In order to reconcile the FORTRAN need for logical records with UNIX files, UNIX
FORTRAN programs add a longword count before and after each logical record of
data. These longwords contain an integer count giving the number of bytes in that
record. Note that direct-access FORTRAN I/O does not write data in this format, but
simply transfers binary data to or from the file.

The use of the F77_UNFORMATTED keyword with the OPENR statement informs
IDL that the file contains unformatted data produced by a UNIX FORTRAN
program. When a file is opened with this keyword, IDL interprets the longword
counts properly and is able to read and write files that are compatible with
FORTRAN.

Reading data from a FORTRAN file

The following UNIX FORTRAN program produces a file containing a five-column
by three-row array of floating-point values with each element set to its one-
dimensional subscript:

PROGRAM ftn2idl

INTEGER i, j
REAL data(5, 3)

OPEN(1, FILE="ftn2idl.dat", FORM="unformatted")
DO 100 j = 1, 3

DO 100 i = 1, 5
data(i,j) = ((j - 1) * 5) + (i - 1)
print *, data(i,j)
UNIX-Specific Information Building IDL Applications



Chapter 8: Files and Input/Output 225
100 CONTINUE
WRITE(1) data
END

Running this program creates the file ftn2idl.dat containing the unformatted array.
The following IDL statements can be used to read this file and print out its contents:

;Create an array to contain the fortran array.
data = FLTARR(5,3)

;Open the fortran-generated file. The F77_UNFORMATTED keyword is
;necessary so that IDL will know that the file contains unformatted
;data produced by a UNIX FORTRAN program.
OPENR, lun, 'ftn2idl.dat', /GET_LUN, /F77_UNFORMATTED

;Read the data in a single input operation.
READU, lun, data

;Release the logical unit number and close the fortran file.
FREE_LUN, lun

;Print the result.
PRINT, data

Executing these IDL statements produces the following output:

0.00000      1.00000      2.00000      3.00000      4.00000
5.00000      6.00000      7.00000      8.00000      9.00000
10.0000      11.0000      12.0000      13.0000      14.0000

Because unformatted data produced by UNIX FORTRAN unformatted WRITE
statements are interspersed with extra information before and after each logical
record, it is important that the IDL program read the data in the same way that the
FORTRAN program wrote it. For example, consider the following attempt to read
the above data file one row at a time:

;Create an array to contain one row of the FORTRAN array.
data = FLTARR(5, /NOZERO)

OPENR, lun, 'ftn2idl.dat', /GET_LUN, /F77_UNFORMATTED

;One row at a time.
FOR I = 0, 4 DO BEGIN

;Read a row of data.
READU, lun, data

;Print the row.
PRINT, data
Building IDL Applications UNIX-Specific Information



226 Chapter 8: Files and Input/Output
ENDFOR

;Close the file.
FREE_LUN, lun

Executing these IDL statements produces the output:

0.00000      1.00000      2.00000      3.00000      4.00000
% READU: End of file encountered. Unit: 100

File: ftn2idl.dat6
% Execution halted at $MAIN$(0).

Here, IDL attempted to read the single logical record written by the FORTRAN
program as if it were written in five separate records. IDL hit the end of the file after
reading the first five values of the first record.

Writing data to a FORTRAN file

The following IDL statements create a five-column by three-row array of floating-
point values with each element set to it’s one-dimensional subscript, and writes the
array to a data file suitable for reading by a FORTRAN program:

;Create the array.
data = FINDGEN(5,3)

;Open a file for writing. Note that the F77_UNFORMATTED keyword is
;necessary to tell IDL to write the data in a format readable by a
;FORTRAN program.
OPENW, lun, 'idl2ftn.dat', /GET_LUN, /F77_UNFORMATTED

;Write the data.
WRITEU, lun, data

;Close the file.
FREE_LUN, lun

The following FORTRAN program reads the data file created by IDL:

PROGRAM idl2ftn

INTEGER i, j
REAL data(5, 3)

OPEN(1, FILE="idl2ftn.dat", FORM="unformatted")
READ(1) data

DO 100 j = 1, 3
DO 100 i = 1, 5

PRINT *, data(i,j)
100 CONTINUE

END
UNIX-Specific Information Building IDL Applications



Chapter 8: Files and Input/Output 227
VMS-Specific Information

Input/output under VMS is a relatively complex topic, involving a large number of
formats and options. VMS files are record-oriented, and it is necessary to take this
into account when writing applications, especially those that will run under other
operating systems. The VMS user faces decisions in the following areas:

Organization

A VMS file can have sequential, relative, or indexed organization. The organization
controls the way in which data is placed in the file and determines the options for
random access. IDL is able to read data from all three organizations and is able to
create sequential or indexed files.

In addition, it is possible to bypass the organization and access a file in “block
mode.” In block mode, most VMS file processing is bypassed. The IDL user can
access a block mode file as if it were simply a stream of uninterpreted bytes. This is
very similar to stream files (although considerably more efficient).

Warning
With some file organizations, VMS intermingles housekeeping information with
data. When accessing such a file in block mode, it is easy to corrupt this
information and render the file unusable in its usual mode; however, block mode
will always work. Avoiding such corruption is the user’s responsibility.

Access

The access mode controls how data in a file are accessed. VMS supports sequential
access, random access by key value (indexed files), relative record number (relative
files), or relative file address (all file organizations). IDL does not support access by
relative record number—files are accessed sequentially or through key value.
Random access for sequential files is allowed by file address using the POINT_LUN
procedure.

Record Format

VMS supports fixed-length records, variable-length records, variable length with
fixed-length control field (VFC), and stream format. Of these, the fixed-length and
variable-length record formats are the most useful and are fully supported by IDL.

It is possible to read the data portion of a VFC file, but not the control field. All
access to stream mode files under IDL is done through the Standard C Library. It is
worth noting that VMS stream files are record oriented (and therefore, fail to provide
Building IDL Applications VMS-Specific Information



228 Chapter 8: Files and Input/Output
much of the flexibility of UNIX stream files) although the VMS Standard C Library
(upon which IDL is implemented) does a good job of concealing this limitation. Our
experience indicates that input/output using VMS stream mode files is dramatically
slower than the other options and should be avoided when possible. For unformatted
data, using block mode can give similar flexibility as well as high efficiency.

Record Attributes

When a record is output to the screen or printer, VMS uses its carriage control
attributes to determine how to output each line. Explicit carriage control specifies that
VMS should do nothing, and the user will provide the appropriate carriage control (if
any) in the data. Carriage-return carriage control specifies that each line should be
preceded by a line feed and followed by a carriage return. FORTRAN carriage
control indicates that the first byte of each record contains a FORTRAN carriage
control character. The possible values of this byte are given in the following table.
The default for IDL is carriage-return carriage control.

File Attributes

There are many file attributes that can be adjusted to suit various requirements. These
attributes allow specifying the default name, the initial size of new files, the amount

Byte
Value

ASCII
Character Meaning

0 (null) No carriage control—output data directly.

32 (space) Single-space. A linefeed precedes the output data, and a
carriage return follows.

48 0 Double-space. Two linefeeds precede the output data,
and a carriage return follows.

49 1 Page eject. A formfeed precedes the data, and a carriage
return follows.

40 + Overprint. A carriage return follows the data, causing
the next output line to overwrite the current one.

36 $ Prompt. A linefeed precedes the data, but no carriage
return follows.

other Same as ASCII space character. Single-space carriage
control

Table 8-14: VMS FORTRAN Carriage Control
VMS-Specific Information Building IDL Applications



Chapter 8: Files and Input/Output 229
by which files are extended, whether the file is printed or sent to a batch queue when
closed, file sharing between processes, etc.

How IDL Handles Records

With record-oriented files, IDL always transfers at least a single record of data. If the
amount of data required exceeds a single record, more input/output occurs. For
example, consider the case of a file open on unit 1 for output with 80-character
records. The statement,

WRITEU, UNIT, FINDGEN(512)

requires 2,048 bytes to be output (each floating-point value takes four bytes), and
thus, causes 26 records to be output. The last record will not be entirely full and is
padded at the end with zeroes.

On later input, the same rule is applied in reverse—26 records are read, and the
unused portion of the last one is discarded. The basic rule of input/output with record-
oriented files is that the form of the input and output statements should match. For
instance, the statements,

WRITEU, UNIT, A
WRITEU, UNIT, B
WRITEU, UNIT, C

generate three output records and should be later input with statements of the
following form:

READU, UNIT, A
READU, UNIT, B
READU, UNIT, C

In contrast, the statement

WRITEU, UNIT, A, B, C

generates a single-output record and should be later input with the following single
statement:

READU, UNIT, A, B, C

Reading FORTRAN-Generated Unformatted Data with IDL

The following VMS FORTRAN program produces a file containing a 5 x 5 array of
floating-point values with each element set to its one-dimensional subscript:

INTEGER I, J REAL DATA(5, 5)
OPEN(1, FILE='data.dat', FORM='unformatted', status='new')
DO 100 J = 1, 5
Building IDL Applications VMS-Specific Information



230 Chapter 8: Files and Input/Output
DO 100 I = 1, 5
DATA(I,J) = ((J-1) * 5) + (I-1)

100 CONTINUE
WRITE(1) DATA

END

Running this program creates the file data.dat containing the unformatted data. By
default, VMS FORTRAN programs create such files using segmented records, which
is a scheme used by FORTRAN to write data records with lengths that exceed the
actual record lengths allowed by VMS. Each segmented record is written as one or
more actual VMS records. Each of the actual records has a 2-byte control field
prepended that allows FORTRAN to reconstruct the original record. IDL is able to
read and write segmented record files if the OPEN statement, used to access the file,
includes the SEGMENTED keyword. The following IDL statements can be used to
read this file and print out its contents:

;Open the file. The SEGMENTED keyword is necessary so that IDL will
;know that the file contains VMS FORTRAN segmented records.
OPENR, 1, 'data.dat', /SEGMENTED

;Create an array to contain the array.
A = FLTARR(5, 5, /NOZERO)

;Read the data in a single input operation.
READU, 1, A

;Print the result.
PRINT, A

Executing these IDL statements produces the following output:

0.00000 1.00000 2.00000 3.00000 4.00000
5.00000 6.00000 7.00000 8.00000 9.00000
10.0000 11.0000 12.0000 13.0000 14.0000
15.0000 16.0000 17.0000 18.0000 19.0000
20.0000 21.0000 22.0000 23.0000 24.0000

As with all record-oriented input/output, it is important that the IDL program read the
data in the same way it was written by the FORTRAN program. For example,
consider the following attempt to read the above data file one row at a time:

;Create an array to contain one row of the array.
OPENR, 1, 'DATA.DAT', /SEGMENTED
A = FLTARR(5, /NOZERO)

;One row at a time.
FOR I = 0, 4 DO BEGIN $

;Read a row of data.
VMS-Specific Information Building IDL Applications



Chapter 8: Files and Input/Output 231
READU, 1, A $

;Print the row.
PRINT, A $

ENDFOR

Executing these IDL statements produces the following output:

0.00000      1.00000      2.00000      3.00000      4.00000
% End of file encountered on file unit: 1.
% Execution halted at $MAIN$(0).

This program attempted to read the single logical record written by the FORTRAN
program as if it were written in five separate records and so, hit the end of the file
after reading the first five values of the first record.

Indexed Files

Creating Indexed Files

Although IDL can read and write indexed files, it cannot create them. The options for
creating indexed files are so numerous that they should be specified using the VMS
CREATE/FDL command. FDL (File Definition Language) is the standard method for
specifying VMS file attributes. The VAX/VMS File Definition Language Facility
Reference Manual (1986) describes FDL in detail. It is often useful to start with the
FDL description for an existing file and then modify it to suit your new application.
The VMS command,

$ ANALYZE/RMS FILE/FDL file.dat

creates a file named file.fdl containing the FDL description for file.dat. The
following is an example of an FDL description for an indexed file named data.dat
with two keys. The first key is a 32-character string containing an employee name.
The second is a 4-byte integer containing the current salary for that employee:

FILE
NAME data.dat
ORGANIZATION indexed

RECORD
SIZE 36

KEY 0
NAME "Name"
SEG0_LENGTH 32
SEG0_POSITION 0
TYPE string

KEY 1
CHANGES yes
Building IDL Applications VMS-Specific Information



232 Chapter 8: Files and Input/Output
NAME "Salary"
SEG0_LENGTH 4
SEG0_POSITION 32
TYPE bin4

Assume that this description resides in a file named data.fdl. The following IDL
statement can be used to create data.dat:

SPAWN, 'create/fdl = data.fdl'

Once the file exists, it can be opened within IDL using the KEYED keyword with the
OPENR or OPENU procedures.

Using Indexed Files

Given a file created using the FDL description in the previous section, the IDL
statements below do four things:

• Add some employee records to the file

• Print the records out sorted by name

• Give an employee a raise

• Print the records sorted by increasing salary

IDL is able to perform both formatted and unformatted input/output with indexed
files. In this instance, unformatted access is required because the record definition
contains a binary field (salary).

;Open the previously created, empty file.
OPENU, UNIT, 'data.dat', /KEY, /GET_LUN

;Add the first record. The STRING function is used to pad the name
;to 32 characters using space characters because the data must
;match the FDL description of the file exactly.
WRITEU, UNIT, STRING('Natasha', FORMAT = "(A,T33)"), 14257L

;Second record.
WRITEU, UNIT, STRING('Bullwinkle', FORMAT = "(A,T33)"), 32501L

;Third record.
WRITEU, UNIT, STRING('Rocky', FORMAT = "(A,T33)"), 32500L

;Fourth and last record.
WRITEU, UNIT, STRING('Borris', FORMAT = "(A,T33)"), 6805L

;Print the contents of the file, sorted by name. READ_BY_INDEX is a
;procedure (described below) that does the actual work.
READ_BY_INDEX, UNIT, 0, 'a', 'By Name:'
VMS-Specific Information Building IDL Applications



Chapter 8: Files and Input/Output 233
;In preparation for giving a raise, make variables to read the
;current information on the employee.
NAME = STRING(REPLICATE(32B, 32))

SALARY = 0L

;Read the record for employee Bullwinkle.
READU, UNIT, NAME, SALARY, KEY_VALUE = 'Bullwinkle'

;Update Bullwinkle's record with an increased salary. The REWRITE
;keyword causes the last input record to be overwritten, instead of
;creating a new record.
WRITEU, UNIT, NAME, SALARY + 10000L, /REWRITE

;Print the contents of the file, sorted by salary.
READ_BY_INDEX, UNIT, 1, 0L, 'By Salary:'

;Free the file unit, and close the file.
FREE_LUN, UNIT

The procedure READ_BY_INDEX is implemented as follows:

;Print the contents of the file sorted on the index given by KI. KV
;is the value the first record should be matched against. Heading
;is a banner comment to be printed before the file contents.
PRO READ_BY_INDEX, UNIT, KI, KV, HEADING

;Indicates first trip through main loop.
FIRST = 1

;Prepare variables to read the records into.
NAME = STRING(REPLICATE(32B, 32))
SALARY = 0L

;The EOF function does not work with indexed files, so we will use
;ON_IOERROR to catch attempts to read too far.
ON_IOERROR, EOD

;Loop will be exited on end-of-file.
WHILE 1 DO BEGIN

;First iteration.
IF (FIRST) THEN BEGIN

;Output the heading.
PRINT, FORMAT='(/, a)', HEADING)

;On first iteration, use keywords to locate the first record.
Building IDL Applications VMS-Specific Information



234 Chapter 8: Files and Input/Output
READU, UNIT, NAME, SALARY, KEY_ID = KI, KEY_MATCH = 1, $
KEY_VALUE = KV

;Indicate that first iteration has happened.
FIRST = 0

;After the first iteration, use normal input statement to read
;sequentially.

ENDIF ELSE BEGIN

READU, UNIT, NAME, SALARY

ENDELSE

;Print the record.
PRINT, FORMAT = '(4X, A, T15, I)', NAME, SALARY

ENDWHILE

;When the above loop tries to read past end-of-file, execution will
;be transferred here.
EOD:

END

Executing the above statements gives the following output:

By Name:
Borris                    6805
Bullwinkle               32501
Natasha                  14257
Rocky                    32500

By Salary:
Borris                    6805
Natasha                  14257
Rocky                    32500
Bullwinkle               42501

Magnetic Tape

Under VMS, IDL offers procedures to directly access magnetic tapes. Data are
transferred between the tape and IDL arrays without using RMS. Optionally, tapes
from IBM mainframe compatible systems may be read or written with odd/even byte
reversal.
VMS-Specific Information Building IDL Applications



Chapter 8: Files and Input/Output 235
The routines used to access magnetic tape directly are as follows:

To use the IDL magnetic tape procedures, you must define a logical name MTn: to be
equivalent to the actual name of the tape drive you wish to use. This definition must
be done before invoking IDL. You also must have the tape mounted as a foreign
volume.

For example, if you wish to access the tape drive MUA0: as IDL tape unit number
one, issue the following VMS commands before running IDL:

$ MOUNT/FOREIGN MUA0:
$ DEFINE MT1 MUA0:

Then, within IDL, refer to the tape as unit number one. The IDL unit number n may
range from 0 to 9.

Note
These unit numbers are not the same as the LUNs used by the other input/output
routines. The unit numbers used by the magnetic tape routines are completely
unrelated and come from the last letter of the MT* logical name used to refer to it.

Magnetic Tape Examples

The following statements skip forward 30 records on the tape mounted on the drive
with the logical name MT2: and print a message if an end-of-file was encountered.

;Skip forward over 30 records on unit 2.
SKIPF, 2, 30, 1

;Print a message if the requested number of records were not
;skipped.
IF !ERR NE 30 THEN PRINT, 'end-of-file hit'

Routine Description

REWIND Rewind a tape unit.

SKIPF Skip records or files.

TAPRD Read from tape.

TAPWRT Write to tape.

WEOF Write an end-of-file mark on tape.

Table 8-15: Magnetic Tape Access Routines
Building IDL Applications VMS-Specific Information



236 Chapter 8: Files and Input/Output
The next example skips two files backwards and then positions the tape immediately
after the second file mark encountered in reverse.

;Go backwards two files. Position after file if two files were
;actually skipped.
SKIPF, 0, -2

IF !ERR EQ -2 THEN SKIPF, 0, 1

The following code segment reads a 512 x 512-byte image from the tape which is
assigned the logical name MT5. It is assumed that the data are written in 2,048-byte
tape blocks.

;Define image array.
a = BYTARR(512, 512)

;Define an array to hold one tape block worth of data.
b = BYTARR(512, 4)

FOR I = 0, 511, 4 DO BEGIN
;Read next record.
TAPRD, B, 5

;Insert four rows starting at i-th row.
A[0, I] = B

ENDFOR

Assuming the tape is actually on drive MXB2:, the mount command, which must be
issued to VMS before entering IDL, is as follows:

;This command serves to both mount the tape and define the logical
;name MT5 to refer to it, thus making it unit 5 within IDL.
$ MOUNT MXB2:/FOR "" MT5

References

Digital Equipment Corporation (1986), VAX/VMS File Definition Language Facility
Reference Manual, Order Number AA-Z415B-TE, Maynard, Massachusetts.
VMS-Specific Information Building IDL Applications



Chapter 8: Files and Input/Output 237
Windows-Specific Information

Under Microsoft Windows, a file is read or written as an uninterrupted stream of
bytes-there is no record structure at the operating system level. Lines in a Windows
text file are terminated by the character sequence CR LF (carriage return, line feed).

The Microsoft C runtime library considers a file to be in either binary or text mode,
and its behavior differs depending on the current mode of the file. The programmer
confusion caused by this distinction is a cause of many C/C++ program bugs.
Programmers familiar with this situation may be concerned about how IDL handles
read and write operations. IDL is not affected by this quirk of the C runtime library,
and no special action is required to work around it. Read/write operations are handled
the same in Windows as in Unix: when IDL performs a formatted I/O operation, it
reads/writes the CR/LF line termination. When it performs a binary operation, it
simply reads/writes raw data.

Versions of IDL prior to IDL 5.4 (5.3 and earlier), however, were affected by the
text/binary distinction made by the C library. The BINARY and NOAUTOMODE
keywords to the OPEN procedures were provided to allow the user to change IDL’s
default behavior during read/write operations. In IDL 5.4 and later versions, these
keywords are no longer necessary. They continue to be accepted in order to allow
older code to compile and run without modification, but they are completely ignored
and can be safely removed from code that does not need to run on those older
versions of IDL.
Building IDL Applications Windows-Specific Information



238 Chapter 8: Files and Input/Output
Macintosh-Specific Information

Macintosh files store two pieces of information not generally stored by files on other
platforms—the file’s type and its creator. The MACTYPE and MACCREATOR
keywords to the OPEN procedures allow you to explicitly set the type and creator for
files created on a Macintosh. See the documentation for the Macintosh-Only
keywords to OPEN in the IDL Reference Guide.
Macintosh-Specific Information Building IDL Applications



Chapter 8: Files and Input/Output 239
Scientific Data Formats

IDL supports the HDF (Hierarchical Data Format), HDF-EOS (Hierarchical Data
Format-Earth Observing System), CDF (Common Data Format), and NetCDF
(Network Common Data Format) self-describing, scientific data formats. Collections
of built-in routines provide an interface between IDL and these formats.
Documentation for specific routines and further discussion of the various formats can
be found in IDL Scientific Data Formats Guide.
Building IDL Applications Scientific Data Formats



240 Chapter 8: Files and Input/Output
Support for Standard Image File Formats

IDL includes routines for reading and writing many standard graphics file formats.
These routines and the types of files they support are listed in the table below.
Documentation on these routines can be found in the online help (enter “?” at the IDL
prompt).

Format Read/Write
Routines Query Routine Description

BMP READ_BMP
WRITE_BMP

QUERY_BMP Windows Bitmap
(.bmp) Format

Interfile READ_INTERFILE

(Write routine is n/a)

n/a Interfile version 3.3
Format

JPEG READ_JPEG
WRITE_JPEG

QUERY_JPEG Joint Photographic
Experts Group files

NRIF (Read routine is n/a)

WRITE_NRIF

n/a NCAR Raster
Interchange Format

PICT READ_PICT
WRITE_PICT

QUERY_PICT Macintosh version 2
PICT files (bitmap only)

PNG READ_PNG
WRITE_PNG

QUERY_PNG Portable Network
Graphics file

PPM READ_PPM
WRITE_PPM

QUERY_PPM PPM/PGM Format

SRF READ_SRF
WRITE_SRF

QUERY_SRF Sun Raster File

TIFF READ_TIFF
WRITE_TIFF

QUERY_TIFF 8-bit or 24-bit Tagged
Image File Format

X11
Bitmap

READ_X11_BITMAP
(Write routine is n/a)

n/a X11 Bitmap format used
for reading bitmaps for
IDL widget button labels

XWD READ_XWD
(Write routine is n/a)

n/a X Windows Dump
format

Table 8-16: IDL-Supported Graphics Standards
Support for Standard Image File Formats Building IDL Applications



Part II: Basics of
IDL Programming





Chapter 9:

Introduction to IDL
Programming

The following topics are covered in this chapter:
What is an IDL Program? . . . . . . . . . . . . .  244
Using the IDL Editor  . . . . . . . . . . . . . . . .  246
Creating a Simple Program . . . . . . . . . . . .  251

Compiling and Running Your Program . . . 252
Commenting Your IDL Code . . . . . . . . . . . 255
Building IDL Applications 243



244 Chapter 9: Introduction to IDL Programming
What is an IDL Program?

There are three types of IDL programs: main-level programs, batch files, and
program files.

Main-Level Programs

Main-level programs are entered at the IDL command line, and are useful when you
have a few commands you want to run without creating a separate file to contain your
commands. To create and run a simple main-level program, do the following:

1. Start IDL

2. At the IDL command line, enter the following:

A = 2

3. Enter .RUN at the IDL command line. The command line prompt changes from
IDL> to -.

4. Enter the following:

A = A * 2
PRINT, A
END

5. This creates a main-level program, which compiles and executes. IDL prints 4.

6. Enter .GO at the IDL command line. The main-level program is executed
again, and now IDL prints 8.

Batch Files

A batch file contains one or more IDL statements or commands. Each line of the
batch file is read and executed before proceeding to the next line. This makes batch
files different from main-level programs, in which the main-level program is
compiled as a unit before being executed, and program files, in which all modules
contained in the file are compiled as a unit before being executed. For an example of
creating and running a batch file, see “Batch Execution” in Chapter 2 of Using IDL.

Program Files

Most IDL applications are in the form of program files. Program files are text files
that contain IDL procedures and/or functions:
What is an IDL Program? Building IDL Applications



Chapter 9: Introduction to IDL Programming 245
• A procedure is a self-contained sequence of IDL statements that performs a
well-defined task. Procedures are defined with the procedure definition
statement, PRO.

• A function is a self-contained sequence of IDL statements that performs a
well-defined task and returns a value to the calling program unit when it is
executed. Functions are defined with the function definition statement,
FUNCTION.

For example, suppose you have a file called hello_world.pro containing the
following code:

PRO hello_world
PRINT, 'Hello World'

END

This IDL “program” consists of a single user-defined procedure.

IDL program files are assumed to have the extension .pro. When IDL searches for a
user-defined procedure or function, it searches for files consisting of the name of the
procedure or function, followed by the .pro extension.

Procedures and functions can also contain arguments and keywords. Arguments allow
variables to be inputted into and/or outputted from a procedure or function. Keywords
are usually used to set specific parameters pertaining to a procedure or function.

For example, the previous user-defined procedure could be changed to include an
argument and a keyword:

PRO hello_world, name, INCLUDE_NAME = include
IF (KEYWORD_SET(include)) THEN PRINT, 'Hello World From ' + $

name ELSE PRINT, 'Hello World'
END

Now if the INCLUDE_NAME keyword is set to a value greater than zero, the above
procedure will include the string contained within the name variable, supplied via the
name argument.

Procedures and functions can also be referred to as routines. An IDL program file
may contain one or many routines, which can be a mix of procedures and functions.
These routines can be written into an IDL program file using the IDL Editor.
Building IDL Applications What is an IDL Program?



246 Chapter 9: Introduction to IDL Programming
Using the IDL Editor

Although any text editor can be used to create an IDL program file, the IDL Editor
contains features that simplify the process of writing IDL code. For example, if you
indent a line using the Tab key, the following lines will be indented as well. Various
keyboard shortcuts are available as well. IDL Editor window key definitions are listed
in the following table.

Key
(Windows)

Key
(Motif)

Key
(Macintosh) Action

←→↑↓ ←→↑↓ ←→↑↓ Move cursor left or right one
character, up or down one
line.

Ctrl+← Ctrl+B Option+← Move left one word.

Ctrl+→ Ctrl+F Option+→ Move right one word.

End Ctrl+E Command+→ Move to end of current line.

Home Ctrl+A Command+← Move to beginning of
current line.

Page Down Page Down Page Down Move to next screen.

Page Up Page Up Page Up Move to previous screen.

Shift+Tab Move cursor one tab-stop
left.

Ctrl+Home Ctrl+Home Home Move to beginning of file.

Ctrl+End Ctrl+End End Move to end of file.

Ctrl+V Delete word to the left of the
cursor.

Ctrl+K Delete word to the right of
the cursor.

Ctrl+K Delete everything in the
current line to the right of the
cursor.

Table 9-1: IDL Editor window key definitions
Using the IDL Editor Building IDL Applications



Chapter 9: Introduction to IDL Programming 247
Text Selection Modes (Windows Only)

IDL Editor windows provide three ways of selecting text: stream mode, line mode,
and column mode.

Ctrl+U Delete everything in the
current line to the left of the
cursor.

Delete Ctrl+D Delete Delete the next character.

Ctrl+U Make selected text (or the
character to the right of the
cursor) lower-case.

Ctrl+Shift+U Make selected text (or the
character to the right of the
cursor) upper-case.

Ctrl+Z Alt+Z Command+Z Undo last action.

Ctrl+Y Alt+Y Command+Z Redo last undone action.

Ctrl+X Alt+X Command+X Cut selection to clipboard.

Ctrl+Shift+Y Cut line containing cursor to
clipboard.

Ctrl+C Alt+C Command+C Copy selection to clipboard.

Ctrl+V Alt+V Command+V Paste contents of clipboard
at current cursor location.

Ctrl+] Find matching (, {, or
[character.

Tab Tab Tab Indent text lines one tab-stop
right.

Command+A Select All.

Command+M Comment line.

Command+, Un-comment line.

Key
(Windows)

Key
(Motif)

Key
(Macintosh) Action

Table 9-1: IDL Editor window key definitions
Building IDL Applications Using the IDL Editor



248 Chapter 9: Introduction to IDL Programming
• Stream mode selects text in a stream, beginning with the first character
selected and ending with the last character, just as if you were reading the text.

• Line mode selects full lines of text.

• Column mode selects text from one screen column to the next. Selecting text in
column mode is similar to drawing a rectangle around the text you wish to
select.

Switch between the three modes by clicking the right mouse button while positioned
over an Editor window. Select the “Selection Mode” option to access a pulldown
menu with the three text selection modes. The option with a check mark by it is the
currently selected text selection mode. If you have text already selected, the selected
area will change to reflect the new mode.

Figure 9-1: A selected stream of text.

Figure 9-2: Text selection using Line Mode.

Figure 9-3: Column Mode text selection.
Using the IDL Editor Building IDL Applications



Chapter 9: Introduction to IDL Programming 249
Chromacoded Editor (Windows Only)

The IDL Editor in IDL for Windows supports chromacoding—different types of IDL
statements appear in different colors. To change the default colors used for different
types of IDL statements, select File → Preferences, and select the Editor tab.

Turning Chromacoding Off

By default, the Windows IDL Editor uses chromacoding. To turn off chromacoding,
select File → Preferences, select the Editor tab, and uncheck the “Enable colored
syntax” checkbox.

Functions/Procedures Menu

When you open a file in the IDL Editor, all functions and procedures defined in that
file are listed in the Functions/Procedures Menu. On Windows, this menu is located
on the IDLDE toolbar. On Motif, this menu is accessed through the () button in the
upper left corner of the Editor window. On Macintosh, this menu is located at the
bottom of the Editor window.

Select a procedure or function from the drop-down list to move the cursor to the
beginning of that procedure or function. This is especially useful for navigating large
program files containing multiple procedures and functions.

Using External Editors (Motif)

If you wish to use more sophisticated editing features on Motif platforms, you can
create an IDLDE macro to open a file that is currently open in the IDL Editor in
another editor such as emacs or vi. Use the following procedure to create a macro:

1. Select Macros → Edit menu to bring up the “Edit Macros” dialog box. You
can use this dialog to create, edit, or remove macros.

2. Complete the fields in the “Edit Macros” dialog:

• Name: The name that appears in the “Macros” list in the “Edit Macros”
dialog. For example, enter “Edit in emacs.”

• Label: The name that appears on the Macros menu. For example, enter
“emacs”.

• Bitmap: The bitmap to use as the toolbar button label.

• Status bar text: The text that appears in the status bar when the mouse is
help over the menu item or toolbar button.
Building IDL Applications Using the IDL Editor



250 Chapter 9: Introduction to IDL Programming
• Tip text: The text for the tooltip that appears when the mouse is held over
the toolbar button.

• IDL command: The IDL command to execute when the macro is selected.
To create a macro for editing in Emacs, enter the following:

SPAWN, 'emacs +%L %P &'

• Select the “Menu” and/or “Toolbar” checkbox to specify whether the
macro will appear in the Macros menu and/or the toolbar.

3. Create the new macro by pressing the “Add” button. If you entered “emacs” in
the Label field, a new “emacs” macro is added to the Macros list.

4. To add a macro for editing in vi, repeat the above steps, but enter the following
in the “IDL command” field:

SPAWN, 'xterm -e vi +%L %P &'

To use the new macros, open the desired file in the IDL editor, then select the desired
Macros menu item or toolbar button.

The IDLDE always checks if the current file has been externally modified before
using it. If a file was modified with an external editor, IDLDE notifies you, and asks
you to reload the file before using it (you can also use the Revert to Saved option
from the File menu to reload the file).
Using the IDL Editor Building IDL Applications



Chapter 9: Introduction to IDL Programming 251
Creating a Simple Program

In this section, we’ll create a simple “Hello World” program consisting of two .pro
files:

1. Start the IDLDE.

2. Start the IDL Editor by selecting File → New or clicking the New File button
on the toolbar.

3. Type the following in the IDL Editor window:

PRO hello_main
name = ''
READ, name, PROMPT='Enter Name: '
str = HELLO_WHO(name)
PRINT, str

END

4. To save the file, select File → Save or click Save button on the toolbar. Save
the file with the name hello_main.pro in the main IDL directory (which the
Save As dialog should already show).

5. Open a new Editor window by selecting File → New, and enter the following
code:

FUNCTION hello_who, who
RETURN, 'Hello ' + who

END

6. Save the file as hello_who.pro in the main IDL directory.

We now have a simple program consisting of a user-defined procedure, which calls a
user-defined function.
Building IDL Applications Creating a Simple Program



252 Chapter 9: Introduction to IDL Programming
Compiling and Running Your Program

Before a procedure or function can be executed, it must be compiled. When a system
routine (a function or procedure built into IDL, such as PLOT) is called, either from
the command line or from another procedure, IDL already knows about this routine
and compiles it automatically. When a user-defined function or procedure is called,
IDL must find the function or procedure and then compile it. When you enter the
name of an uncompiled user-defined procedure at the command line or call the
procedure from another procedure, IDL searches the current directory for
filename.pro, then filename.sav, where filename is the name of the procedure. If no
file is found in the current directory, IDL searches each directory specified by !PATH.
(For more on the IDL path, see “!PATH” in Appendix D of the IDL Reference Guide.)
If a file is found, IDL automatically compiles the contents and executes the function
or procedure that has the same name as the file specified (excluding the suffix).

There are several ways to compile a procedure or function:

• If the file is open in the IDL Editor, select Compile from the Run menu or
click the Compile button on the toolbar.

• Use the .COMPILE executive command at the IDL command line.

• Enter the name of the procedure or function at the IDL command line.
Multiple procedures and/or functions can be defined in the same .pro file, so if
the file defines more than one procedure or function, only the procedure or
function with the name entered at the command line will be compiled (and
subsequently executed). For example, suppose a file named proc1.pro
contains the following procedure definitions:

PRO proc1
PRINT, 'This is proc1'

END

PRO proc2
PRINT, 'This is proc2'

END

PRO proc3
PRINT, 'This is proc3'

END

If you enter proc1 at the IDL command line, only the proc1 procedure will
be compiled and executed. If you enter proc2 or proc3 at the command line,
you will get an error informing you that you attempted to call an undefined
procedure.
Compiling and Running Your Program Building IDL Applications



Chapter 9: Introduction to IDL Programming 253
If you select the Compile button on the IDLDE toolbar or you enter
.COMPILE proc1 at the command line, all three procedures will be compiled.
You can then enter either proc1, proc2, or proc3 at the command line to
execute the corresponding procedure.

In our “Hello World” example, we have a user-defined procedure that contains a call
to a user-defined function. If you enter the name of the user-defined procedure,
hello_main, at the command line, IDL will compile and execute the hello_main
procedure. After you provide the requested input, a call to the hello_who function is
made. IDL searches for hello_who.pro, and compiles and executes the function.

In general, the name of the IDL program file should be the same as the name of the
last procedure or function within this file. This last routine is usually the main
routine, which calls all the other routines within the IDL program file. Using this
convention for your IDL program files ensures that all the related routines within the
file are compiled before being called by the last main routine.

Many program files within the IDL distribution use this formatting style. For
example, open the program file for the XLOADCT procedure, xloadct.pro, in the
IDL Editor. This file is in the lib/utilities subdirectory of the IDL distribution.
This file contains several routines. The main routine (XLOADCT) is at the bottom of
the file. When this file is compiled, the IDL Output Log notes all the routines within
this file that are compiled:

IDL> .COMPILE XLOADCT
% Compiled module: XLCT_PSAVE.
% Compiled module: XLCT_ALERT_CALLER.
% Compiled module: XLCT_SHOW.
% Compiled module: XLCT_DRAW_CPS.
% Compiled module: XLCT_TRANSFER.
% Compiled module: XLOADCT_EVENT.
% Compiled module: XLOADCT.

Since these routines are now compiled, you can run XLOADCT:

IDL> XLOADCT
% Compiled module: XREGISTERED.
% Compiled module: LOADCT.
% Compiled module: FILEPATH.
% Compiled module: CW_BGROUP.
% Compiled module: XMANAGER.

The remaining compiled modules are other IDL program files contained within the
distribution. These files (routines) are called within the XLOADCT routine.
Building IDL Applications Compiling and Running Your Program



254 Chapter 9: Introduction to IDL Programming
Tip
When editing a program file containing multiple functions and/or procedures in the
IDL Editor, you can easily move to the desired function or procedure by selecting
its name from the Functions/Procedures Menu. See “Functions/Procedures Menu”
on page 249 for more information.

Compilation Errors

If an error occurs during compilation, the error is reported in the Output Log of the
IDLDE. For example, because the END statement is commented out, the following
user-defined procedure will result in a compilation error:

PRO procedure_without_END
PRINT, 'Hello World'

;END

When trying to compile this procedure (after saving it into a file named
procedure_without_END.pro), you will receive the following error in the IDL
Ouput Log:

IDL> .COMPILE procedure_without_END

% End of file encountered before end of program.
% 1 Compilation errors in module PROCEDURE_WITHOUT_END.

The location of this error is also reported in the IDL Editor (for Windows and
Macintosh, but not for Motif):

• In the Windows IDL Editor, a red dot appears to the left of each line that
contains an error.

• On Macintosh, errors are reported in the IDL Error Window. You can use this
window to locate a specific error in the IDL Editor by double-clicking on the
stop (hand) icon to the left of this error, then a red triangle will appear in the
IDL Editor to the left of the line containing the error.

The Windows and Macintosh IDL Output Logs will also contain a line noting the file
and lines in which the errors occur.
Compiling and Running Your Program Building IDL Applications



Chapter 9: Introduction to IDL Programming 255
Commenting Your IDL Code

In IDL, the semicolon is the comment character. When IDL encounters the
semicolon, it ignores the remainder of the line. It is good programming practice to
fully annotate programs with comments. There are no execution-time or space
penalties for comments in IDL.

A comment can exist on a line by itself, or can follow another IDL statement, as
shown below:

; This is a comment
COUNT = 5 ; Set the variable COUNT equal to 5.
Building IDL Applications Commenting Your IDL Code



256 Chapter 9: Introduction to IDL Programming
Commenting Your IDL Code Building IDL Applications



Chapter 10:

Assignment
The following topics are covered in this chapter:
Overview of the Assignment Statement  . .  258
Assigning a Value to a Variable  . . . . . . . .  260
Assigning Scalars to Array Elements . . . .  261

Assigning Arrays to Array Elements . . . . . 262
Avoid Using Range Subscripts  . . . . . . . . . 264
Using Associated File Variables  . . . . . . . . 266
Building IDL Applications 257



258 Chapter 10: Assignment
Overview of the Assignment Statement

The assignment statement stores a value in a variable. There are three forms of the
assignment statement, as shown in the following table.

Syntax Subscript
Structure

Expression
Structure Effect

Variable = Expression None All Expression is stored in Variable.

Variable[Subscripts] =
Expression

Scalar Scalar Expression is stored in a single
element of Variable

Scalar Array Expression array is inserted in
Variable array.

Array Scalar Expression scalar is stored in
designated elements of Variable.

Array Array Elements of Expression are stored
in designated elements of Variable.

Variable[Range] =
Expression

Range Scalar When possible, range subscripts
should be avoided. See “Avoid
Using Range Subscripts” on
page 264.

Scalar is inserted into subarray.

Range Array When possible, range subscripts
should be avoided. See “Avoid
Using Range Subscripts” on
page 264.

If Variable[Range] and Array are
the same size, elements of Array
specified by Range are inserted in
Variable. Illegal if Variable[Range]
and Array are different sizes.

Table 10-1: Types of Assignment Statements
Overview of the Assignment Statement Building IDL Applications



Chapter 10: Assignment 259
Note
In versions of IDL prior to version 5.0, parentheses were used to enclose array
subscripts. While using parentheses to enclose array subscripts will continue to
work as in previous version of IDL, we strongly suggest that you use brackets in all
new code. See “Array Subscript Syntax: [ ] vs. ( )” on page 86 for additional details.
Building IDL Applications Overview of the Assignment Statement



260 Chapter 10: Assignment
Assigning a Value to a Variable

The most basic form of the assignment statement is as follows:

Variable = Expression

The old value of the variable, if any, is discarded, and the value of the expression is
stored in the variable. The expression on the right side can be of any type or structure.

Examples

Some examples of the basic form of the assignment statement are as follows:

;Set mmax to value.
mmax = 100 * X + 2.987

;name becomes a scalar string variable.
name = 'Mary'

;Make arr a 100-element, floating-point array.
arr = FLTARR(100)

;Discard points 0 to 49 of arr. It is now a 50-element array.
arr = arr[50:*]
Assigning a Value to a Variable Building IDL Applications



Chapter 10: Assignment 261
Assigning Scalars to Array Elements

The second type of assignment statement has the following form:

Variable[Subscripts] = Scalar_Expression

Here, a single element of the specified array is set to the value of the scalar
expression. The expression can be of any type and is converted, if necessary, to the
type of the variable. The variable on the left side must be either an array or a file
variable. Some examples of assigning scalar expressions to subscripted variables are:

;Set element 100 of data to value.
data[100] = 1.234999

;Store string in an array. name must be a string array or an error
;will result.
name[index] = 'Joe'

;Set element [X, Y] of the 2-dimensional array image to the value
contained in pixel.
image[X, Y] = pixel

Using Array Subscripts

The subscripted variable can have either a scalar or array subscript. If the subscript
expression is an array, the scalar value is stored in the elements of the array whose
subscripts are elements of the subscript array. For example, the following statement
zeroes the four specified elements of data: data[3], data[5], data[7] and data[9]:

data[[3, 5, 7, 9]] = 0

The subscript array is converted to longword type if necessary before use. Elements
of the subscript array that are negative, or greater than the highest subscript of the
subscripted array, are clipped to the target array boundaries. Note that a common
error is to use a negative scalar subscript (e.g., A[-1]). Using this type of subscript
causes an error. Negative array subscripts (e.g., A[[-1]]) do not cause errors.

The WHERE function can be used to select array elements to be changed. For
example, the statement:

data[WHERE(data LT 0)] = -1

sets all negative elements of data to -1 without changing the positive elements. The
result of the function, WHERE(data LT 0), is a vector composed of the subscripts of
the negative elements of data. Using this vector as a subscript changes only the
negative elements.
Building IDL Applications Assigning Scalars to Array Elements



262 Chapter 10: Assignment
Assigning Arrays to Array Elements

The fourth type of assignment statement is of the following form:

Variable[Subscripts] = Array

Note that this form is syntactically identical to the second type of assignment
statement, but that the expression on the right-hand-side is an array instead of a
scalar. This form of the assignment statement is used to insert one array into another.

The array expression on the right is inserted into the array appearing on the left side
of the equal sign starting at the point designated by the subscripts.

Examples

For example, to insert the contents of an array called A into array B, starting at point
B[13, 24], use the following statement:

B[13, 24] = A

If A is a 5-column by 6-row array, elements B[13:17, 24:29] are replaced by the
contents of array A.

In the next example, a subarray is moved from one position to another:

B[100, 200] = B[200:300, 300:400]

A subarray of B, specifically the columns 200 to 300 and rows 300 to 400, is moved
to columns 100 to 200 and rows 200 to 300, respectively.

Using Array Subscripts

If the subscript expression applied to the variable is an array and an array appears on
the right side of the statement:

Variable[Array] = Array

then elements from the right side are stored in the elements designated by the
subscript vector. Only those elements of the subscripted variable whose subscripts
appear in the subscript vector are changed. For example, the statement

B[[ 2, 4, 6 ]] = [4, 16, 36]

is equivalent to the following series of assignment statements:

B[2] = 4
B[4] = 16
B[6] = 36
Assigning Arrays to Array Elements Building IDL Applications



Chapter 10: Assignment 263
Subscript elements are interpreted as if the subscripted variable is a vector. For
example, if A is a 10 × n matrix, the element A[i, j] has the subscript i+10*j. The
subscript array is converted to longword type before use, if necessary.

As described previously for the second form of assignment statement, elements of the
subscript array that are negative or larger than the highest subscript are clipped to the
target array boundaries. Note that a common error is to use a negative scalar
subscript (e.g., A[-1]). Using this type of subscript causes an error. Negative array
subscripts (e.g., A[[-1]]) do not cause errors.

As another example, assume that the vector DATA contains data elements and that a
data drop-out is denoted by a negative value. In addition, assume that there are never
two or more adjacent drop-outs. The following statements replace all drop-outs with
the average of the two adjacent good points:

;Subscript vector of drop-outs.
bad = WHERE(data LT 0)

;Replace drop-outs with average of previous and next point.
data[bad] = (data[bad - 1] + data[bad + 1]) / 2

In this example, the following actions are performed:

• We use the LT (less than) operator to create an array, with the same dimensions
as data, that contains a 1 for every element of data that is less than zero and
a zero for every element of data that is zero or greater. We use this “drop-out
array” as a parameter for the WHERE function, which generates a vector that
contains the one-dimensional subscripts of the elements of the drop-out array
that are nonzero. The resulting vector, stored in the variable bad, contains the
subscripts of the elements of data that are less than zero.

• The expression data[bad - 1] is a vector that contains the subscripts of the
points immediately preceding the drop-outs; while similarly, the expression
data[bad + 1] is a vector containing the subscripts of the points immediately
after the drop-outs.

• The average of these two vectors is stored in data[bad], the points that
originally contained drop-outs.
Building IDL Applications Assigning Arrays to Array Elements



264 Chapter 10: Assignment
Avoid Using Range Subscripts

It is possible to use range subscripts in an assignment statement, however, when
possible, you should avoid using range subscripts in favor of using scalar or array
subscripts. This type of assignment statement takes the following form:

Variable[Subscript_Range] = Expression

A subscript range specifies a beginning and ending subscript. The beginning and
ending subscripts are separated by the colon character. An ending subscript equal to
the size of the dimension minus one can be written as *.

For example, arr[I:J] denotes those points in the vector arr with subscripts between I
and J inclusive. I must be less than or equal to J and greater than or equal to zero. J
denotes the points in arr from arr[I] to the last point and must be less than the size of
the dimension arr [I:*]. See Chapter 5, “Arrays” for more details on subscript ranges.

Examples

Assuming the variable B is a 512 × 512-byte array, some examples are as follows:

;Store 1 in every element of the i-th row.
array[*, I] = 1

;Store 1 in every element of the j-th column.
array[J, *] = 1

;Zero all the rows of columns 200 through 220 of array.
array[200:220, *] = 0

;Store the value 100 in all the elements of array.
array[*] = 100

When possible, you should avoid using range subscripts in favor of using scalar or
array subscripts. Consider the following example:

A = INTARR(10)
X = [1,1,1]
PRINT, 'A = ', A
; Slow way:
t=SYSTIME(1) & FOR i=0L,100000 DO A[4:6] = X &

PRINT,'Slow way: ', SYSTIME(1)-t
PRINT, 'A = ', A
; Correct way is 4 times faster!!:
t=SYSTIME(1) & FOR i=0L,100000 DO a[4] = X &

PRINT, 'Fast way: ', SYSTIME(1)-t
PRINT, 'A = ', A
Avoid Using Range Subscripts Building IDL Applications



Chapter 10: Assignment 265
IDL Prints:

A = 0 0 0 0 0 0 0 0 0 0
Slow way:       0.47000003
A = 0 0 0 0 1 1 1 0 0 0
Fast way:       0.12100005
A = 0 0 0 0 1 1 1 0 0 0

The statement A[4] = X, where X is a three-element array, causes IDL to start at
index 4 of array A, and replace the next three elements in A with the elements in X.
Because of the way it is implemented in IDL, A[4:6] = X is much less efficient
than A[4] = X.
Building IDL Applications Avoid Using Range Subscripts



266 Chapter 10: Assignment
Using Associated File Variables

A special case occurs when using an associated file variable in an assignment
statement. For additional information regarding the ASSOC function, see ASSOC in
the IDL Reference Guide. When a file variable is referenced, the last (and possibly
only) subscript denotes the record number of the array within the file. This last
subscript must be a simple subscript. Other subscripts and subscript ranges, except
the last, have the same meaning as when used with normal array variables.

An implicit extraction of an element or subarray in a data record can also be
performed. For example:

;Variable A associates the file open on unit 1 with the records of
;200-element, floating-point vectors.
A = ASSOC(1, FLTARR(200))

;Then, X is set to the first 100 points of record number 2, the
;third record of the file.
X = A[0:99, 2]

;Set the 24th point of record 16 to 12.
A[23, 16] = 12

;Increment points 10 to 199 of record 12. Points 0 to 9 of the
;record remain unchanged.
A[10, 12] = A[10:*, 12]+1
Using Associated File Variables Building IDL Applications



Chapter 11:

Program Control
The following topics are covered in this chapter:
Overview . . . . . . . . . . . . . . . . . . . . . . . . . .  268
Compound Statements  . . . . . . . . . . . . . . .  269
Conditional Statements . . . . . . . . . . . . . . .  272

Loop Statements  . . . . . . . . . . . . . . . . . . . . 279
Jump Statements  . . . . . . . . . . . . . . . . . . . . 286
Building IDL Applications 267



268 Chapter 11: Program Control
Overview

IDL contains various constructs for controlling the flow of program execution, such
as conditional expressions and looping mechanisms. These constructs include:

Compound Statements

• BEGIN...END

Conditional Statements

• IF...THEN...ELSE

• CASE

• SWITCH

Loop Statements

• FOR...DO

• REPEAT...UNTIL

• WHILE...DO

Jump Statements

• BREAK

• CONTINUE

• GOTO
Overview Building IDL Applications



Chapter 11: Program Control 269
Compound Statements

Many of the language constructs that we will discuss in this chapter evaluate an
expression, then perform an action based on whether the expression is true or false,
such as with the IF statement:

IF expression THEN statement

For example, we would say “If X equals 1, then set Y equal to 2” as follows:

IF (X EQ 1) THEN Y = 2

But what if we want to do more than one thing if X equals 1? For example, “If X
equals 1, set Y equal to 2 and print the value of Y.” If we wrote it as follows, then the
PRINT statement would always be executed, not just when X equals 1:

IF (X EQ 1) THEN Y = 2
PRINT, Y

IDL provides a container into which you can put multiple statements that are the
subject of a conditional or repetitive statement. This container is called a
BEGIN...END block, or compound statement. A compound statement is treated as a
single statement and can be used anywhere a single statement can appear.

BEGIN...END

The BEGIN...END statement is used to create a block of statements, which is simply
a group of statements that are treated as a single statement. Blocks are necessary
when more than one statement is the subject of a conditional or repetitive statement.

For example, the above code could be written as follows:

IF (X EQ 1) THEN BEGIN
Y = 2
PRINT, Y

END

All the statements between the BEGIN and the END are the subject of the IF
statement. The group of statements is executed as a single statement. Syntactically, a
block of statements is composed of one or more statements of any type, started by
BEGIN and ended by an END identifier. To be syntactically correct, we should have
ended our block with ENDIF rather than just END:

IF (X EQ 1) THEN BEGIN
Y = 2
PRINT, Y

ENDIF
Building IDL Applications Compound Statements



270 Chapter 11: Program Control
This is to ensure proper nesting of blocks. The END identifier used to terminate the
block should correspond to the type of statement in which BEGIN is used. The
following table lists the correct END identifiers to use with each type of statement.

Note
CASE and SWITCH also have their own END identifiers. CASE should always be
ended with ENDCASE, and SWITCH should always be ended with ENDSWITCH.

Statement END
Identifier Example

ELSE BEGIN ENDELSE IF (0) THEN A=1 ELSE BEGIN
A=2

ENDELSE

FOR variable=init, limit DO BEGIN ENDFOR FOR i=1,5 DO BEGIN
PRINT, array[i]

ENDFOR

IF expression THEN BEGIN ENDIF IF (0) THEN BEGIN
A=1

ENDIF

REPEAT BEGIN ENDREP REPEAT BEGIN
A = A * 2

ENDREP UNTIL A GT B

WHILE expression DO BEGIN ENDWHILE WHILE NOT EOF(1) DO BEGIN
READF, 1, A, B, C

ENDWHILE

LABEL: BEGIN END LABEL1: BEGIN
PRINT, A

END

case_expression: BEGIN END CASE name OF
'Moe': BEGIN

PRINT, 'Stooge'
END

ENDCASE

switch_expression: BEGIN END SWITCH name OF
'Moe': BEGIN

PRINT, 'Stooge'
END

ENDSWITCH

Table 11-1: Types of END Identifiers
Compound Statements Building IDL Applications



Chapter 11: Program Control 271
The IDL compiler checks the end of each block, comparing it with the type of the
enclosing statement. Any block can be terminated by the generic END, but no type
checking is performed. Using the correct type of END identifier for each block makes
it easier to find blocks that you have not properly terminated.

Listings produced by the IDL compiler indent each block four spaces to the right of
the previous level to make the program structure easier to read. (See .RUN in the IDL
Reference Guide for details on producing program listings with the IDL compiler.)
Building IDL Applications Compound Statements



272 Chapter 11: Program Control
Conditional Statements

Most useful applications have the ability to perform different actions in response to
different conditions. This decision-making ability is provided in the form of
conditional statements.

IF...THEN...ELSE

The IF statement is used to conditionally execute a statement or a block of
statements. The syntax of the IF statement is as follows:

IF expression THEN statement [ ELSE statement ]

or

IF expression THEN BEGIN
statements

ENDIF [ ELSE BEGIN
statements

ENDELSE ]

The expression after the “IF” is called the condition of the IF statement. This
expression (or condition) is evaluated, and if true, the statement following the
“THEN” is executed. For example:

A = 2
IF A EQ 2 THEN PRINT, 'A is two '

Here, IDL prints “A is two”.

If the expression evaluates to a false value, the statement following the “ELSE”
clause is executed:

A = 3
IF A EQ 2 THEN PRINT, 'A is two ' ELSE PRINT, 'A is not two'

Here, IDL prints “A is not two”.

Control passes immediately to the next statement if the condition is false and the
ELSE clause is not present.

Note
Another way to write an IF...THEN...ELSE statement is with a conditional
expression using the ?: operator. For more information, see “Conditional
Expression” on page 30.
Conditional Statements Building IDL Applications



Chapter 11: Program Control 273
Definition of True and False

The condition of the IF statement can be any scalar expression. The definition of true
and false for the different data types is as follows:

• Byte, integer, and long: odd integers are true, even integers are false.

• Floating-Point, double-precision floating-point, and complex: non-zero values
are true, zero values are false. The imaginary part of complex numbers is
ignored.

• String: any string with a nonzero length is true, null strings are false.

In the following example, the logical statement for the condition is a conjunction of
two conditions:

IF (LON GT -40) AND (LON LE -20) THEN ...

If both conditions (LON being larger than –40 and less than or equal to –20) are true,
the statement following the THEN is executed.

Using Statement Blocks with the IF Statement

The THEN and ELSE clauses can be in the form of a block (or group of statements)
with the delimiters BEGIN and END (see “BEGIN...END” on page 269). To ensure
proper nesting of blocks, you can use ENDIF and ENDELSE to terminate the block,
instead of using the generic END. Below is an example of the use of blocks within an
IF statement.

IF (I NE 0.0) THEN BEGIN
...

ENDIF ELSE BEGIN
...

ENDELSE

Nesting IF Statements

IF statements can be nested in the following manner:

IF P1 THEN S1 ELSE $
IF P2 THEN S2 ELSE $

...
IF PN THEN SN ELSE SX

If condition P1 is true, only statement S1 is executed; if condition P2 is true, only
statement S2 is executed, etc. If none of the conditions are true, statement SX will be
executed. Conditions are tested in the order they are written. The construction above
is similar to the CASE statement except that the conditions are not necessarily
related.
Building IDL Applications Conditional Statements



274 Chapter 11: Program Control
CASE

The CASE statement is used to select one, and only one, statement for execution,
depending upon the value of the expression following the word CASE. This
expression is called the case selector expression. The general form of the CASE
statement is as follows:

CASE expression OF
expression: statement
...
expression: statement

[ELSE: statement]
ENDCASE

Each statement that is part of a CASE statement is preceded by an expression that is
compared to the value of the selector expression. CASE executes by comparing the
CASE expression with each selector expression in the order written. If a match is
found, the statement is executed and control resumes directly below the CASE
statement.

The ELSE clause of the CASE statement is optional. If included, it matches any
selector expression, causing its code to be executed. For this reason, it is usually
written as the last clause in the CASE statement. The ELSE statement is executed
only if none of the preceding statement expressions match. If an ELSE clause is not
included and none of the values match the selector, an error occurs and program
execution stops.

The BREAK statement can be used within CASE statements to force an immediate
exit from the CASE.

Example

An example of the CASE statement follows:

CASE name OF
'Larry': PRINT, 'Stooge 1'
'Moe': PRINT, 'Stooge 2'
'Curly': PRINT, 'Stooge 3'

ELSE: PRINT, 'Not a Stooge'
ENDCASE

Another example shows the CASE statement with the number 1 as the selector
expression of the CASE. One is equivalent to true and is matched against each of the
conditionals.

CASE 1 OF
(X GT 0) AND (X LE 50): Y = 12 * X + 5
(X GT 50) AND (X LE 100): Y = 13 * X + 4
Conditional Statements Building IDL Applications



Chapter 11: Program Control 275
(X LE 200): BEGIN
Y = 14 * X - 5
Z = X + Y

END
ELSE: PRINT, 'X has an illegal value.'
ENDCASE

In this CASE statement, only one clause is selected, and that clause is the first one
whose value is equal to the value of the case selector expression.

Tip
Each clause is tested in order, so it is most efficient to order the most frequently
selected clauses first.

SWITCH

The SWITCH statement is used to select one statement for execution from multiple
choices, depending upon the value of the expression following the word SWITCH.
This expression is called the switch selector expression.

The general form of the SWITCH statement is as follows:

SWITCH Expression OF
Expression: Statement
...
Expression: Statement

[ELSE: Statement ]
ENDSWITCH

Each statement that is part of a SWITCH statement is preceded by an expression that
is compared to the value of the selector expression. SWITCH executes by comparing
the SWITCH expression with each selector expression in the order written. If a match
is found, program execution jumps to that statement and execution continues from
that point. Unlike the CASE statement, execution does not resume below the
SWITCH statement after the matching statement is executed. Whereas CASE
executes at most one statement within the CASE block, SWITCH executes the first
matching statement and any following statements in the SWITCH block. Once a
match is found in the SWITCH block, execution falls through to any remaining
statements. For this reason, the BREAK statement is commonly used within
SWITCH statements to force an immediate exit from the SWITCH block.

The ELSE clause of the SWITCH statement is optional. If included, it matches any
selector expression, causing its code to be executed. For this reason, it is usually
written as the last clause in the switch statement. The ELSE statement is executed
only if none of the preceding statement expressions match. If an ELSE clause is not
Building IDL Applications Conditional Statements



276 Chapter 11: Program Control
included and none of the values match the selector, program execution continues
immediately below the SWITCH without executing any of the SWITCH statements.

CASE Versus SWITCH

The CASE and SWITCH statements are similar in function, but differ in the
following ways:

• Execution exits the CASE statement at the end of the matching statement. By
contrast, execution within a SWITCH statement falls through to the next
statement. The following table illustrates this difference:

Because of this difference, the BREAK statement is often used within
SWITCH statements, but less frequently within CASE. (For more information
on using the BREAK statement, see “BREAK” on page 286.) For example, we
can add a BREAK statement to the SWITCH example in the above table to
make the SWITCH example behave the same as the CASE example:

x=2
SWITCH x OF

1: PRINT, 'one'
2: BEGIN

PRINT, 'two'
BREAK

END
3: PRINT, 'three'
4: PRINT, 'four'

ENDSWITCH

CASE SWITCH

x=2
CASE x OF

1: PRINT, 'one'
2: PRINT, 'two'
3: PRINT, 'three'
4: PRINT, 'four'

ENDCASE

x=2
SWITCH x OF

1: PRINT, 'one'
2: PRINT, 'two'
3: PRINT, 'three'
4: PRINT, 'four'

ENDSWITCH

IDL Prints:

two

IDL Prints:

two
three
four

Table 11-2: CASE versus SWITCH
Conditional Statements Building IDL Applications



Chapter 11: Program Control 277
IDL Prints:

two

• If there are no matches within a CASE statement and there is no ELSE clause,
IDL issues an error and execution halts. Failure to match is not an error within
a SWITCH statement. Instead, execution continues immediately following the
SWITCH.

The decision on whether to use CASE or SWITCH comes down deciding which of
these behaviors fits your code logic better. For example, our first example of the
CASE statement looked like this:

CASE name OF
'Larry': PRINT, 'Stooge 1'
'Moe': PRINT, 'Stooge 2'
'Curly': PRINT, 'Stooge 3'

ELSE: PRINT, 'Not a Stooge'
ENDCASE

We could write this example using SWITCH:

SWITCH name OF
'Larry': BEGIN

PRINT, 'Stooge 1'
BREAK

END
'Moe': BEGIN

PRINT, 'Stooge 2'
BREAK

END
'Curly': BEGIN

PRINT, 'Stooge 3'
BREAK

END
ELSE: PRINT, 'Not a Stooge'
ENDSWITCH

Clearly, this code can be more succinctly expressed using a CASE statement.

There may be other cases when the fall-through behavior of SWITCH suits your
application. The following example illustrates an application that uses SWITCH
more effectively. The DAYS_OF_XMAS procedure accepts an integer argument
specifying which of the 12 days of Christmas to start on. It starts on the specified day,
and prints the presents for all previous days. If we enter 3, for example, we want to
print the presents for days 3, 2, and 1. Therefore, the fall-through behavior of
SWITCH fits this problem nicely. The first day of Christmas requires special
Building IDL Applications Conditional Statements



278 Chapter 11: Program Control
handling, so we use a BREAK statement at the end of the statement for case 2 to
prevent execution of the statement associated with case 1:

PRO DAYS_OF_XMAS, day

IF (N_ELEMENTS(day) EQ 0) THEN DAY = 12
IF ((day LT 1) OR (day GT 12)) THEN day = 12
day_name = [ 'First', 'Second', 'Third', 'Fourth', 'Fifth', $

'Sixth', 'Seventh', 'Eighth', 'Ninth', 'Tenth',$
'Eleventh', 'Twelfth' ]

PRINT, 'On The ', day_name[day - 1], $
' Day Of Christmas My True Love Gave To Me:'

SWITCH day of
12: PRINT, '    Twelve Drummers Drumming'
11: PRINT, '    Eleven Pipers Piping'
10: PRINT, '    Ten Lords A-Leaping'
9: PRINT, '    Nine Ladies Dancing'
8: PRINT, '    Eight Maids A-Milking'
7: PRINT, '    Seven Swans A-Swimming'
6: PRINT, '    Six Geese A-Laying'
5: PRINT, '    Five Gold Rings'
4: PRINT, '    Four Calling Birds'
3: PRINT, '    Three French Hens'
2: BEGIN

PRINT, '    Two Turtledoves'
PRINT, '    And a Partridge in a Pear Tree!'
BREAK

END
1: PRINT, '    A Partridge in a Pear Tree!'

ENDSWITCH
END

If we pass the value 3 to the DAYS_OF_XMAS procedure, we get the following
output:

On The Third Day Of Christmas My True Love Gave To Me:
Three French Hens
Two Turtledoves
And a Partridge in a Pear Tree!

Achieving this behavior with CASE would be difficult.
Conditional Statements Building IDL Applications



Chapter 11: Program Control 279
Loop Statements

One of the most common programming tasks is to perform the same set of statements
multiple times. Rather than repeat a set of statements again and again, a loop can be
used to perform the same set of statements repeatedly.

Note
IDL’s array capabilities can often be used in place of loops to write much more
efficient programs. For example, if you want to perform the same calculation on
each element of an array, you could write a loop to iterate over each array element:

array = INDGEN(10)
FOR i = 0,9 DO BEGIN

array[i] = array[i] * 2
ENDFOR

This is much less efficient than using IDL’s built-in array capabilities:

array = INDGEN(10)
array = array * 2

FOR...DO

The FOR statement is used to execute one or more statements repeatedly, while
incrementing or decrementing a variable with each repetition, until a condition is
met. It is analogous to the DO statement in FORTRAN.

In IDL, there are two types of FOR statements: one with an implicit increment of 1
and the other with an explicit increment. If the condition is not met the first time the
FOR statement is executed, the subject statement is not executed.

FOR Statement with an Increment of One

The FOR statement with an implicit increment of one is written as follows:

FOR Variable = Expression, Expression DO Statement

The variable after the FOR is called the index variable and is set to the value of the
first expression. The subject statement is executed, and the index variable is
incremented by 1 until the index variable is larger than the second expression. This
second expression is called the limit expression. Complex limit and increment
expressions are converted to floating-point type.
Building IDL Applications Loop Statements



280 Chapter 11: Program Control
Warning
The data type of the index variable is determined by the type of the initial value
expression. Keep this fact in mind to avoid the following:

FOR I = 0, 50000 DO ... ...

This loop does not produce the intended result. Converting the longword constant
50,000 to a short integer yields −15,536 because of truncation. The loop is not
executed. The index variable’s initial value is larger than the limit variable. The
loop should be written as follows:

FOR I = 0L, 50000 DO ... ...

Note also that changing the data type of an index variable within a loop is not
allowed, and will cause an error.

Warning
Also be aware of FOR loops that are entered but are not terminated after the
expected number of iterations, because of the truncation effect. For example, if the
index value exceeds the maximum value for the initial data type (and so is
truncated) when it is expected instead to exceed the specified index limit, then the
loop will continue beyond the expected number of iterations.

The following FOR statement continues infinitely:

FOR i = 0B, 240, 16 DO PRINT, i

The problem occurs because the variable i is initialized to a byte type with 0B.
After the index reaches the limit value 240B, i is incremented by 16, causing the
value to go to 256B, which is interpreted by IDL as 0B, because of the truncation
effect. As a result, the FOR loop “wraps around” and the index can never be
exceeded.

Examples

A simple FOR statement:

FOR I = 1, 4 DO PRINT, I, I^2

This statement produces the following output:
Loop Statements Building IDL Applications



Chapter 11: Program Control 281
1 1
2 4
3 9
4 16

The index variable I is first set to an integer variable with a value of one. The call to
the PRINT procedure is executed, then the index is incremented by one. This is
repeated until the value of I is greater than four at which point execution continues at
the statement following the FOR statement.

The next example displays the use of a block structure (instead of a single statement)
as the subject of the FOR statement. The example is a common process used for
computing a count-density histogram. (Note that a HISTOGRAM function is
provided by IDL.)

FOR K = 0, N - 1 DO BEGIN
C = A[K]
HIST(C) = HIST(C)+1

ENDFOR

The next example displays a FOR statement with floating-point index and limit
expressions, where X is set to a floating-point variable and steps through the values
(1.5, 2.5, ..., 10.5):

FOR X = 1.5, 10.5 DO S = S + SQRT(X)

The indexing variables and expressions can be integer, longword, floating-point, or
double-precision. The type of the index variable is determined by the type of the first
expression after the “=” character.

Warning
Due to the inexact nature of IEEE floating-point numbers, using floating-point
indexing can cause “infinite loops” and other problems. This problem is also
manifested in both the C and FORTRAN programming languages. For example, the
numbers 0.1, 0.01, 1.6, and 1.7 do not have exact representations under the IEEE
standard. To see this phenomenon, enter the following IDL command:

PRINT, 0.1, 0.01, 1.6, 1.7, FORMAT='(f20.10)'

IDL prints the following approximations to the numbers we requested:

0.1000000015
0.0099999998
1.6000000238
1.7000000477
Building IDL Applications Loop Statements



282 Chapter 11: Program Control
See Accuracy & Floating-Point Operations in the Using IDL manual for more
information about floating-point numbers.

FOR Statement with Variable Increment

The format of the second type of FOR statement is as follows:

FOR Variable = Expression1, Expression2, Increment DO Statement

This form is used when an increment other than 1 is desired.

The first two expressions describe the range of numbers for the index variable. The
Increment specifies the increment of the index variable. A negative increment allows
the index variable to step downward.

Examples

The following examples demonstrate the second type of FOR statement.

;Decrement, K has the values 100., 99., ..., 1.
FOR K = 100.0, 1.0, -1 DO ...

;Increment by 2., loop has the values 0., 2., 4., ..., 1022.
FOR loop = 0, 1023, 2 DO ...

;Divide range from bottom to top by 4.
FOR mid = bottom, top, (top - bottom)/4.0 DO ...

Warning
If the value of the increment expression is zero, an infinite loop occurs. A common
mistake resulting in an infinite loop is a statement similar to the following:

FOR X = 0, 1, .1 DO ....

The variable X is first defined as an integer variable because the initial value
expression is an integer zero constant. Then the limit and increment expressions are
converted to the type of X, integer, yielding an increment value of zero because .1
converted to integer type is 0. The correct form of the statement is:

FOR X = 0., 1, .1 DO ....

which defines X as a floating-point variable.
Loop Statements Building IDL Applications



Chapter 11: Program Control 283
Sequence of the FOR Statement

The FOR statement performs the following steps:

1. The value of the first expression is evaluated and stored in the specified
variable, which is called the index variable. The index variable is set to the
type of this expression.

2. The value of the second expression is evaluated, converted to the type of the
index variable, and saved in a temporary location. This value is called the limit
value.

3. The value of the third expression, called the step value, is evaluated, type-
converted if necessary, and stored. If omitted, a value of 1 is assumed.

4. If the index variable is greater than the limit value (in the case of a positive
step value) the FOR statement is finished and control resumes at the next
statement. Similarly, in the case of a negative step value, if the index variable
is less than the limit value, control resumes after the FOR statement.

5. The statement or block following the DO is executed.

6. The step value is added to the index variable.

7. Steps 4, 5, and 6 are repeated until the test of Step 4 fails.

REPEAT...UNTIL

REPEAT...UNIL loops are used to repetitively execute a subject statement until a
condition is true. The condition is checked after the subject statement is executed.
Therefore, the subject statement is always executed at least once.

The syntax of the REPEAT statement is as follows:

REPEAT statement UNTIL expression

or

REPEAT BEGIN
statements

ENDREP UNTIL expression

Examples

The following example finds the smallest power of 2 that is greater than B:

A = 1
B = 10
REPEAT A = A * 2 UNTIL A GT B
Building IDL Applications Loop Statements



284 Chapter 11: Program Control
The subject statement can also be in the form of a block:

A = 1
B = 10
REPEAT BEGIN

A = A * 2
ENDREP UNTIL A GT B

The next example sorts the elements of ARR using the inefficient bubble sort
method. (A more efficient way to sort elements is to use IDL’s SORT function.)

;Sort array.
REPEAT BEGIN

;Set flag to true.
NOSWAP = 1
FOR I = 0, N - 2 DO IF arr[I] GT arr[I + 1]THEN BEGIN
;Swapped elements, clear flag.
NOSWAP = 0
T = arr[I] & arr[I] = arr[I + 1] & arr[I + 1] = T
ENDIF

;Keep going until nothing is moved.
ENDREP UNTIL NOSWAP

WHILE...DO

WHILE...DO loops are used to execute a statement repeatedly while a condition
remains true. The WHILE...DO statement is similar to the REPEAT...UNTIL
statement except that the condition is checked prior to the execution of the statement.

The syntax of the WHILE...DO statement is as follows:

WHILE expression DO statement

or

WHILE expression DO BEGIN
statements

ENDWHILE

When the WHILE statement is executed, the conditional expression is tested, and if it
is true, the statement following the DO is executed. Control then returns to the
beginning of the WHILE statement, where the condition is again tested. This process
is repeated until the condition is no longer true, at which point the control of the
program resumes at the next statement.

In the WHILE statement, the subject is never executed if the condition is initially
false.
Loop Statements Building IDL Applications



Chapter 11: Program Control 285
Examples

The following example reads data until the end-of-file is encountered:

WHILE NOT EOF(1) DO READF, 1, A, B, C

The subject statement can also be in the form of a block:

WHILE NOT EOF(1) DO BEGIN
READF, 1, A, B, C

ENDWHILE

The next example demonstrates one way to find the first element of an array greater
than or equal to a specified value assuming the array is sorted into ascending order:

array = [2, 3, 5, 6, 10]
i = 0 ;Initialize index
n = N_ELEMENTS(array)

;Increment i until a point larger than 5 is found or the end of the
;array is reached:

WHILE (array[i] LT 5) AND (i LT n) DO i = i + 1

PRINT, 'The first element >= 5 is element ', i

IDL Prints:

The first element >= 5 is element 2

Tip
Another way to accomplish the same thing is with the WHERE command, which is
used to find the subscripts of the points where ARR[I] is greater than or equal to X.

P = WHERE(arr GE X)
;Save first subscript:
I = P(0)
Building IDL Applications Loop Statements



286 Chapter 11: Program Control
Jump Statements

Jump statements can be used to modify the behavior of conditional and iterative
statements. Jump statements allow you to exit a loop, start the next iteration of a loop,
or explicitly transfer program control to a specified location in your program.

Statement Labels

Labels are the destinations of GOTO statements as well as the ON_ERROR and
ON_IOERROR procedures. The label field is simply an identifier followed by a
colon. Label identifiers, as with variable names, consist of 1 to 15 alphanumeric
characters, and are case insensitive. The dollar sign ($) and underscore (_) characters
can appear after the first character. Some examples of labels are as follows:

LABEL1:
LOOP_BACK: A = 12
I$QUIT: RETURN ;Comments are allowed.

BREAK

The BREAK statement provides a convenient way to immediately exit from a loop
(FOR, WHILE, REPEAT), CASE, or SWITCH statement without resorting to the
GOTO statement.

Example

This example illustrates a situation in which using the BREAK statement makes a
loop more efficient. In this example, we create a 10,000-element array of integers
from 0 to 9999, ordered randomly. Then we use a loop to find where in the array the
value 5 is located. If the value is found, we BREAK out of the loop because there is
no need to check the rest of the array:

Note
This example could be written more efficiently using the WHERE function. This
example is intended only to illustrate how BREAK might be used.

; Create a randomly-ordered array of integers
; from 0 to 9999:

array = SORT(RANDOMU(seed,10000))
n = N_ELEMENTS(array)

; Find where in array the value 5 in located:
Jump Statements Building IDL Applications



Chapter 11: Program Control 287
FOR i = 0,n-1 DO BEGIN
   IF (array[i] EQ 5) THEN BREAK
ENDFOR

PRINT, i

We could write this loop without using the BREAK statement, but this would require
us to continue the loop even after we find the value we’re looking for (or resort to
using a GOTO statement):

FOR i = 0, n-1 DO BEGIN
   IF (array[i] EQ 5) THEN found=i
ENDFOR

PRINT, found

CONTINUE

The CONTINUE statement provides a convenient way to immediately start the next
iteration of the enclosing FOR, WHILE, or REPEAT loop. Whereas the BREAK
statement exits from a loop, the CONTINUE statement exits only from the current
loop iteration, proceeding immediately to the next iteration.

Note
Do not confuse the CONTINUE statement described here with the .CONTINUE
executive command The two constructs are not related, and serve completely
different purposes.

Note
CONTINUE is not allowed within CASE or SWITCH statements. This is in
contrast with the C language, which does allow this.

Example

This example presents one way (not necessarily the best) to print the even numbers
between 1 and 10:

FOR I=1,10 DO BEGIN
IF (I AND 1) THEN CONTINUE ; If odd, start next iteration

PRINT, I
ENDFOR
Building IDL Applications Jump Statements



288 Chapter 11: Program Control
GOTO

The GOTO statement is used to transfer program control to a point in the program
specified by the label. The GOTO statement is generally considered to be a poor
programming practice that leads to unwieldy programs. Its use should be avoided.
However, for those cases in which the use of a GOTO is appropriate, IDL does
provide the GOTO statement.

Note that using a GOTO to jump into the middle of a loop results in an error.

The syntax of the GOTO statement is as follows:

GOTO, Label

Warning
You must be careful in programming with GOTO statements. It is not difficult to
get into a loop that will never terminate, especially if there is not an escape (or test)
within the statements spanned by the GOTO.

Example

In the following example, the statement at label JUMP1 is executed after the GOTO
statement, skipping any intermediate statements:

GOTO, JUMP1
PRINT, 'Skip this' ; This statement is skipped
PRINT, 'Skip this' ; This statement is also skipped
JUMP1: PRINT, 'Do this'

The label can also occur before the GOTO statement that refers to the label, but you
must be careful to avoid an endless loop. GOTO statements are frequently the
subjects of IF statements, as in the following statement:

IF A NE G THEN GOTO, MISTAKE
Jump Statements Building IDL Applications



Chapter 12:

Procedures and
Functions

The following topics are covered in this chapter:
Overview . . . . . . . . . . . . . . . . . . . . . . . . . .  290
Defining a Procedure . . . . . . . . . . . . . . . . .  291
Defining a Function . . . . . . . . . . . . . . . . . .  293
Parameters . . . . . . . . . . . . . . . . . . . . . . . . .  296
Using Keyword Parameters . . . . . . . . . . . .  299
Keyword Inheritance . . . . . . . . . . . . . . . . .  301

Entering Procedure Definitions  . . . . . . . . . 306
How IDL Resolves Routines . . . . . . . . . . . 308
Parameter Passing Mechanism  . . . . . . . . . 309
Calling Mechanism  . . . . . . . . . . . . . . . . . . 311
Setting Compilation Options . . . . . . . . . . . 313
Advice for Library Authors . . . . . . . . . . . . 315
Building IDL Applications 289



290 Chapter 12: Procedures and Functions
Overview

Procedures and functions are self-contained modules that break large tasks into
smaller, more manageable ones. Modular programs simplify debugging and
maintenance and, because they are reusable, minimize the amount of new code
required for each application.

New procedures and functions can be written in IDL and called in the same manner
as the system-defined procedures or functions from the keyboard or from other
programs. When a procedure or function is finished, it executes a RETURN
statement that returns control to its caller. Functions always return an explicit result.
A procedure is called by a procedure call statement, while a function is called by a
function reference. For example, if ABC is a procedure and XYZ is a function, the
calling syntax is:

;Call procedure ABC with two parameters.
ABC, A, 12

;Call function XYZ with one parameter. The result of XYZ is stored
;in variable A.
A = XYZ(C/D)
Overview Building IDL Applications



Chapter 12: Procedures and Functions 291
Defining a Procedure

A sequence of one or more IDL statements can be given a name, compiled, and saved
for future use with the procedure definition statement. Once a procedure has been
successfully compiled, it can be executed using a procedure call statement
interactively from the terminal, from a main program, or from another procedure or
function.

The general format for the definition of a procedure is as follows:

PRO Name, Parameter1, ..., Parametern
;Statements defining procedure.
Statement1
Statement2
...

;End of procedure definition.
END

The PRO statement must be the first line in a user-written IDL procedure.

Calling a user-written procedure that is in a directory in the IDL search path (!PATH)
and has the same name as the prefix of the .SAV or .PRO file, causes the procedure to
be read from the disk, compiled, and executed without interrupting program
execution.
Building IDL Applications Defining a Procedure



292 Chapter 12: Procedures and Functions
Calling a Procedure

The syntax of the procedure call statement is as follows:

Procedure_Name, Parameter1, Parameter2, ..., Parametern

The procedure call statement invokes a system, user-written, or externally-defined
procedure. The parameters that follow the procedure’s name are passed to the
procedure. When the called procedure finishes, control resumes at the statement
following the procedure call statement. Procedure names can be up to 128 characters
long.

Procedures can come from the following sources:

• System procedures provided with IDL.

• User-written procedures written in IDL and compiled with the .RUN
command.

• User-written procedures that are compiled automatically because they reside in
directories in the search path. These procedures are compiled the first time
they are used. See “Defining a Function” on page 293.

• Procedures written in IDL, that are included with the IDL distribution, located
in directories that are specified in the search path.

• Under many operating systems, user-written system procedures coded in
FORTRAN, C, or any language that follows the standard calling conventions,
which have been dynamically linked with IDL using the LINKIMAGE or
CALL_EXTERNAL procedures.

Example

Some procedures can be called without any parameters. For example:

ERASE

This is a procedure call to a subroutine to erase the screen. There are no explicit
inputs or outputs. Other procedures have one or more parameters. For example, the
statement:

PLOT, CIRCLE

calls the PLOT procedure with the parameter CIRCLE.
Calling a Procedure Building IDL Applications



Chapter 12: Procedures and Functions 293
Defining a Function

A function is a program unit containing one or more IDL statements that returns a
value. This unit executes independently of its caller. It has its own local variables and
execution environment. Once a function has been defined, references to the function
cause the program unit to be executed. All functions return a function value which is
given as a parameter in the RETURN statement used to exit the function. Function
names can be up to 128 characters long.

The general format of a function definition is as follows:

FUNCTION Name, Parameter1, ..., Parametern
Statement1
Statement2
...
...
RETURN, Expression

END

Example

To define a function called AVERAGE, which returns the average value of an array,
use the following statements:

FUNCTION AVERAGE, arr
RETURN, TOTAL(arr)/N_ELEMENTS(arr)

END

Once the function AVERAGE has been defined, it is executed by entering the
function name followed by its arguments enclosed in parentheses. Assuming the
variable X contains an array, the statement,

PRINT, AVERAGE(X^2)

squares the array X, passes this result to the AVERAGE function, and prints the
result. Parameters passed to functions are identified by their position or by a
keyword. See “Using Keyword Parameters” on page 299.

Automatic Execution

IDL automatically compiles and executes a user-written function or procedure when
it is first referenced if:

1. The source code of the function is in the current working directory or in a
directory in the IDL search path defined by the system variable !PATH.
Building IDL Applications Defining a Function



294 Chapter 12: Procedures and Functions
2. The name of the file containing the function is the same as the function name
suffixed by .pro or .sav. Under UNIX, the suffix should be in lowercase letters.

Note
IDL is case-insensitive. However, for some operating systems, IDL only checks for
the lowercase filename based on the name of the procedure or function. We
recommend that all filenames be named with lowercase.

Warning
User-written functions must be defined before they are referenced, unless they meet
the above conditions for automatic compilation or the function name has been
reserved by using the FORWARD_FUNCTION statement described below. This
restriction is necessary in order to distinguish between function calls and
subscripted variable references.

For information on how to access routines, see “Executing Program Files” in Chapter
2 of the Using IDL manual.

Forward Function Definition

Versions of IDL prior to version 5.0 used parentheses to indicate array subscripts.
Because function calls use parentheses as well, the IDL compiler is not able to
distinguish between arrays and functions by examining the statement syntax.

This problem has been addressed beginning with IDL version 5.0 by the use of square
brackets “[ ]” instead of parentheses to specify array subscripts. See “Array Subscript
Syntax: [ ] vs. ( )” on page 86 for a discussion of the IDL version 5.0 and later syntax.
However, because parentheses are still allowed in array subscripting statements, the
need for a mechanism by which the programmer can “reserve” a name for a function
that has not yet been defined remains. The FORWARD_FUNCTION statement
addresses this need.

As mentioned above, ambiguities can arise between function calls and array
references when a function has not yet been compiled, or there is no file with the
same name as the function found in the IDL path.

For example, attempting to compile the IDL statement:

A = xyz(1, COLOR=1)
Defining a Function Building IDL Applications



Chapter 12: Procedures and Functions 295
will cause an error if the user-written function XYZ has not been compiled and the
filename xyz.pro is not found in the IDL path. IDL reports a syntax error, because
xyz is interpreted as an array variable instead of a function name.

This problem can be eliminated by using the FORWARD_FUNCTION statement.
This statement has the following syntax:

FORWARD_FUNCTION Name1, Name2, ..., NameN

where Name is the name of a function that has not yet been compiled. Any names
declared as forward-defined functions will be interpreted as functions (instead of as
variable names) for the duration of the IDL session.

For example, we can resolve the ambiguity in the previous example by adding a
FORWARD_FUNCTION definition:

;Define XYZ as the name of a function that has not yet been
;compiled.
FORWARD_FUNCTION XYZ

;IDL now understands this statement to be a function call instead
;of a bad variable reference.
a = XYZ(1, COLOR=1)

Note
Declaring a function that will be merged into IDL via the LINKIMAGE command
with the FORWARD_FUNCTION statement will not have the desired effect.
Routines merged via LINKIMAGE are considered by IDL to be built-in routines,
and thus need no compilation or declaration. They must, however, be merged with
IDL before any routines that call them are compiled.
Building IDL Applications Defining a Function



296 Chapter 12: Procedures and Functions
Parameters

The variables and expressions passed to the function or procedure from its caller are
parameters. Actual parameters are those appearing in the procedure call statement or
the function reference. In the examples at the beginning of this section, the actual
parameters in the procedure call are the variable A and the constant 12, while the
actual parameter in the function call is the value of the expression (C/D).

Formal parameters are the variables declared in the procedure or function definition.
The same procedure or function can be called using different actual parameters from
a number of places in other program units.

Correspondence of Formal and Actual Parameters

The correspondence between the actual parameters of the caller and the formal
parameters of the called procedure is established by position or by keyword.

Positional Parameters

A positional parameter, or plain argument, is a parameter without a keyword. Just as
its name implies, the position of a positional parameter establishes the
correspondence—the n-th formal positional parameter is matched with the n-th actual
positional parameter.

Keyword Parameters

A keyword parameter, which can be either actual or formal, is an expression or
variable name preceded by a keyword and an equal sign (“=”) that identifies which
parameter is being passed.

When calling a routine with a keyword parameter, you can abbreviate the keyword to
its shortest, unambiguous abbreviation. Keyword parameters can also be specified by
the caller with the syntax /KEYWORD, which is equivalent to setting the keyword
parameter to 1 (e.g., KEYWORD = 1). The syntax /KEYWORD is often referred to,
in the rest of this documentation, as setting the keyword.

For example, a procedure is defined with a keyword parameter named TEST.

PRO XYZ, A, B, TEST = T

The caller can supply a value for the formal (keyword) parameter T with the
following calls:

;Supply only the value of T. A and B are undefined inside the
;procedure.
XYZ, TEST = A
Parameters Building IDL Applications



Chapter 12: Procedures and Functions 297
;The value of A is copied to formal parameter T (note the
;abbreviation for TEST), Q to A, and R to B.
XYZ, TE = A, Q, R

;Variable Q is copied to formal parameter A. B and T are undefined
;inside the procedure.
XYZ, Q

Note
When supplying keyword parameters for a function, the keyword is specified inside
the parentheses:

result = FUNCTION(Arg1, Arg2, KEYWORD = value)

Copying Parameters

When a procedure or function is called, the actual parameters are copied into the
formal parameters of the procedure or function and the module is executed.

On exit, via a RETURN statement, the formal parameters are copied back to the
actual parameters, providing they were not expressions or constants. Parameters can
be inputs to the program unit; they can be outputs in which the values are set or
changed by the program unit; or they can be both inputs and outputs.

When a RETURN statement is encountered in the execution of a procedure or
function, control is passed back to the caller immediately after the point of the call. In
functions, the parameter of the RETURN statement is the result of the function.

Number of Parameters

A procedure or a function can be called with fewer arguments than were defined in
the procedure or function. For example, if a procedure is defined with 10 parameters,
the user or another procedure can call the procedure with 0 to 10 parameters.

Parameters that are not used in the actual argument list are set to be undefined upon
entering the procedure or function. If values are stored by the called procedure into
parameters not present in the calling statement, these values are discarded when the
program unit exits. The number of actual parameters in the calling list can be found
by using the system function N_PARAMS. Use the N_ELEMENTS function to
determine if a variable is defined.
Building IDL Applications Parameters



298 Chapter 12: Procedures and Functions
Example

An example of an IDL function to compute the digital gradient of an image is shown
in the example below. The digital gradient approximates the two-dimensional
gradient of an image and emphasizes the edges.

This simple function consists of three lines corresponding to the three required
components of IDL procedures and functions: the procedure or function declaration,
the body of the procedure or function, and the terminating end statement.

FUNCTION GRAD, image
;Define a function called GRAD. Result is ABS(dz/dx) + ABS(dz/dy).

;Evaluate and return the result.
RETURN, ABS(image - SHIFT(image, 1, 0)) + $
ABS(image-SHIFT(image, 0, 1))

;End of function.
END

The function has one parameter called IMAGE. There are no local variables. Local
variables are variables active only within a module (i.e., they are not parameters and
are not contained in common blocks).

The result of the function is the value of the expression used as an argument to the
RETURN statement. Once compiled, the function is called by referring to it in an
expression. Two examples are shown below.

;Store gradient of B in A.
A = GRAD(B)

;Display gradient of IMAGE sum.
TVSCL, GRAD(abc + def)
Parameters Building IDL Applications



Chapter 12: Procedures and Functions 299
Using Keyword Parameters

A short example of a function that exchanges two columns of a 4 × 4 homogeneous,
coordinate-transformation matrix is shown below. The function has one positional
parameter, the coordinate-transformation matrix T. The caller can specify one of the
keywords XYEXCH, XZEXCH, or YZEXCH to interchange the xy, xz, or yz axes of
the matrix. The result of the function is the new coordinate transformation matrix
defined below.

;Function to swap columns of T. XYEXCH swaps columns 0 and 1,
;XZEXCH swaps 0 and 2, and YZEXCH swaps 1 and 2.
FUNCTION SWAP, T, XYEXCH = xy, XZEXCH = xz, YZEXCH = yz

;Swap columns 0 and 1 if keyword XYEXCH is set.
IF KEYWORD_SET(XY) THEN S=[0,1] $

;Check to see if xz is set.
ELSE IF KEYWORD_SET(XZ) THEN S=[0,2] $

;Check to see if yz is set.
ELSE IF KEYWORD_SET(YZ) THEN S=[1,2] $

;If nothing is set, return.
ELSE RETURN, T

;Copy matrix for result.
R = T

;Exchange two columns using matrix insertion operators and
;subscript ranges.

R[S[1], 0] = T[S[0], *]
R[S[0], 0] = T[S[1], *]

;Return result.
RETURN, R

END

Typical calls to SWAP are as follows:

Q = SWAP(!P.T, /XYEXCH)
Q = SWAP(Q, /XYEX)
Q = SWAP(INVERT(Z), YZ = 1)
Q = SWAP(Z, XYE = I EQ 0, XZE = I EQ 1, YZE = I EQ 2)

Note that keyword names can abbreviated to the shortest unambiguous string. The
last example sets one of the three keywords according to the value of the variable I.
Building IDL Applications Using Keyword Parameters



300 Chapter 12: Procedures and Functions
This function example uses the system function KEYWORD_SET to determine if a
keyword parameter has been passed and if it is nonzero. This is similar to using the
condition:

IF N_ELEMENTS(P) NE 0 THEN IF P THEN ... ...

to test if keywords that have a true/false value are both present and true.
Using Keyword Parameters Building IDL Applications



Chapter 12: Procedures and Functions 301
Keyword Inheritance

Keyword inheritance allows IDL routines to accept keyword parameters not defined
in their function or procedure declaration and pass them on to routines they call. This
greatly simplifies writing “wrapper” routines, which are variations of a system or
user-provided routine. Specifically, keyword inheritance allows your routines to
accept keywords accepted by routines that it calls without explicitly handling each
keyword individually.

There are two distinct mechanisms to handle keyword inheritance: one to pass
keyword parameters by value, and another to pass keyword parameters by reference.

_EXTRA: Passing Keyword Parameters by Value

You can pass keyword parameters to called routines by value by adding the formal
keyword parameter “_EXTRA” (note the underscore character) to the definition of
your routine. Passing parameters by value means that you are giving the called
routine the contents of an existing IDL variable to work with. In turn, this means that
keyword parameters passed into a routine by value cannot be returned to the calling
routine — there is no variable name into which the value can be placed.

When a routine is defined with the formal keyword parameter _EXTRA, pairs of
unrecognized keywords and values are placed in an anonymous structure. The name
of each unrecognized keyword becomes a tag name, and the keyword value becomes
the tag value. Changes to this structure created by using the _EXTRA keyword do not
affect variables in the calling program.

When the keyword _EXTRA appears in a procedure or function call, its argument is
either a structure containing additional keyword/value pairs which are inserted into
the argument list, or a string array as described in the next section. The value of
_EXTRA can also be “undefined”, indicating that no additional keyword parameters
were passed.

_REF_EXTRA: Passing Keyword Parameters by Reference

You can pass keyword parameters to called routines by reference by adding the
formal keyword parameter “_REF_EXTRA” (note the underscore character) to the
definition of your routine. Passing parameters by reference means that you are giving
the called routine the name of an existing IDL variable to work with; IDL takes care
of keeping track of the value associated with the name. The values of keyword
parameters specified via _REF_EXTRA are not available to the routine that is
passing the keywords on.
Building IDL Applications Keyword Inheritance



302 Chapter 12: Procedures and Functions
When a routine is defined with the formal keyword parameter _REF_EXTRA, pairs
of unrecognized keywords and values are placed in a storage location that is
accessible to both calling and called routines, and the keyword names are placed in an
IDL string array. The string array can be “deciphered” using the _EXTRA keyword,
which matches the names in the string with the “live” values in the storage location.
This means that if the keywords specify IDL variables, the values of those variables
can be altered by any routine that has access to the variable via the keyword
inheritance mechanism. In this fashion, the values of keyword parameters can be
changed within a routine and passed back to the routine’s caller.

The “pass by reference” keyword inheritance mechanism is especially useful when
writing object methods, which may be inherited multiple times and which often wish
to change the value of variables available to the calling method. (The values of object
properties are one example of data that can profitably be shared by objects at various
levels in an object hierarchy.)

Accepting Extra Keyword Parameters

While you must choose whether a routine will pass extra keyword parameters by
value or by reference when defining the routine (specifying both _EXTRA and
_REF_EXTRA as formal parameters will cause an error), routines that accept extra
keyword parameters can use either the _EXTRA keyword or the _REF_EXTRA
keyword. However, it is not possible to both have access to the keyword values and
pass them along to called routines by reference within the same routine. This means
that any routine that needs access to the passed keyword parameters must use
_EXTRA in its definition statement, or define the keyword explicitly itself.

Selective Keyword Redirection

If extra keyword parameters have been passed by reference, you can direct different
inherited keywords to different routines by specifying a string or array of strings
containing keyword names via the _EXTRA keyword. For example, suppose that we
write a procedure named SOMEPROC that passes extra keywords by reference:

PRO SOMEPROC, _REF_EXTRA = ex
ONE, _EXTRA=['MOOSE', 'SQUIRREL']
TWO, _EXTRA='SQUIRREL'
END

If we call the SOMEPROC routine with three keywords:

SOMEPROC, MOOSE=moose, SQUIRREL=3, SPY=PTR_NEW(moose)

• it will pass the keywords MOOSE and SQUIRREL and their values (the IDL
variable moose and the integer 3, respectively) to procedure ONE,
Keyword Inheritance Building IDL Applications



Chapter 12: Procedures and Functions 303
• it will pass the keyword SQUIRREL at its value to procedure TWO,

• it will do nothing with the keyword SPY.

Choosing a Keyword Inheritance Mechanism

The “pass by reference” (_REF_EXTRA) keyword inheritance mechanism was
introduced in IDL version 5.1, and in many cases is a good choice even if values are
not being passed back to the calling routine. Because the _REF_EXTRA mechanism
does not create an IDL structure to hold the keyword/value pairs, overhead is slightly
reduced. Two situations lend themselves to use of the _REF_EXTRA mechanism:

1. You need to pass the values of keyword variables back from a called routine to
the calling routine.

2. Your routine is an “inner loop” routine that may be called many times. If the
routine is called repeatedly, the savings resulting from not creating a new IDL
structure with each call may be significant.

It is important to remember that if the routine that is passing the keyword values
through also needs access to the values of the keywords for some reason, you must
use the “pass by value” (_EXTRA) mechanism.

Note
Updating existing routines that use _EXTRA to use _REF_EXTRA is relatively
easy. Since the called routine uses _EXTRA to receive the extra keywords in either
case, you need only change the _EXTRA to _REF_EXTRA in the definition of the
calling routine.

By contrast, the “pass by value” (_EXTRA) keyword inheritance mechanism is
useful in the following situations:

1. Your routine needs access to the values of the extra keywords for some reason.

2. You want to ensure that variables specified as keyword parameters are not
changed by a called routine.

Example: Keywords Passed by Value

One of the most common uses for the “pass by value” keyword inheritance
mechanism is to create “wrapper” routines that extend the functionality of existing
routines. In most “wrapper” routines, there is no need to return values to the calling
routine — the aim is simply to implement the complete set of keywords available to
the existing routine in the wrapper routine.
Building IDL Applications Keyword Inheritance



304 Chapter 12: Procedures and Functions
For example, suppose that procedure TEST is a wrapper to the PLOT command. The
text of such a procedure is shown below:

PRO TEST, a, b, _EXTRA = e, COLOR = color
PLOT, a, b, COLOR = color, _EXTRA = e

END

The procedure definition:

PRO TEST, a, b, _EXTRA = e, COLOR = color

places unrecognized keywords (e.g., any keywords other than COLOR) and their
values into the variable “e”. If there are no unrecognized keywords, e will be
undefined.

When procedure TEST is called with the following command:

TEST, x, y, COLOR=3, LINESTYLE = 4, THICK=5

variable “e”, within TEST, contains an anonymous structure with the value:

{ LINESTYLE: 4, THICK: 5 }

These keyword/value pairs are then be passed from TEST to the PLOT routine using
the _EXTRA keyword:

PLOT, a, b, COLOR = color, _EXTRA = e

Note that keywords passed into a routine via _EXTRA override previous settings of
that keyword. For example, the call:

PLOT, a, b, COLOR = color, _EXTRA = {COLOR: 12}

specifies a color index of 12 to PLOT.

Example: Keywords Passed by Reference

The “pass by reference” keyword inheritance mechanism allows you to change the
value of a variable in the calling routine’s context from within the routine. To
demonstrate the difference between _EXTRA and _REF_EXTRA, consider the
following simple example procedures:

PRO TEST1, _EXTRA = ex
HELP, _EXTRA = ex
END

PRO TEST2, _REF_EXTRA = ex
HELP, _EXTRA = ex
END
Keyword Inheritance Building IDL Applications



Chapter 12: Procedures and Functions 305
Both TEST1 and TEST2 are simple wrappers to the HELP procedure. Observe the
result when we call each routine, specifying OUTPUT as an extra keyword
parameter, then use the HELP procedure again to determine the value of the output
variable:

TEST1, OUTPUT = out & HELP, out

IDL prints:

% At  TEST1               2 /dev/tty
%     $MAIN$
EX              UNDEFINED = <Undefined>
Compiled Procedures:
    $MAIN$  TEST1
Compiled Functions:

Now run TEST2:

TEST2, OUTPUT = out & HELP, out

IDL prints:

OUT             STRING    = Array[8]
Building IDL Applications Keyword Inheritance



306 Chapter 12: Procedures and Functions
Entering Procedure Definitions

Procedures and functions are compiled using the .RUN or .COMPILE executive
commands. The format of these commands is as follows:

.RUN [File1 , Filen, ... ]

.COMPILE [File1 , Filen, ... ]

From 1 to 10 files, each containing one or more program units, can be compiled. For
more information, see .RUN and .COMPILE in the IDL Reference Guide.

To enter program text directly from the keyboard, simply enter .RUN at the
IDL> prompt. IDL will prompt with the “-” character, indicating that it is compiling
a directly entered program. As long as IDL requires more text to complete a program
unit, it prompts with the “-”character. Rather than executing statements immediately
after they are entered, IDL compiles the program unit as a whole.

Procedure and function definition statements cannot be entered in the single-
statement mode, but must be prefaced by either .RUN or .RNEW.

The first non-empty line the IDL compiler reads determines the type of the program
unit: procedure, function, or main program. If the first non-empty line is not a
procedure or function definition statement, the program unit is assumed to be a main
program. The name of the procedure or function is given by the identifier following
the keyword PRO or FUNCTION. If a program unit with the same name is already
compiled, it is replaced by the new program unit.

Note Regarding Functions

User-defined functions, with the exception of those contained in directories specified
by the IDL system variable !PATH, must be compiled before the first reference to the
function is compiled. This is necessary because the IDL compiler is unable to
distinguish between a reference to a variable subscripted with parentheses and a call
to a presently undefined user function with the same name. For example, in the
statement

A = XYZ(5)

it is impossible to tell by context alone if XYZ is an array or a function.

Note
In versions of IDL prior to version 5.0, parentheses were used to enclose array
subscripts. While using parentheses to enclose array subscripts will continue to
Entering Procedure Definitions Building IDL Applications



Chapter 12: Procedures and Functions 307
work as in previous version of IDL, we strongly suggest that you use brackets in all
new code. See “Array Subscript Syntax: [ ] vs. ( )” on page 86 for additional details.

When IDL encounters references that may be either a function call or a subscripted
variable, it searches the current directory, then the directories specified by !PATH, for
files with names that match the unknown function or variable name. If one or more
files matching the unknown name exist, IDL compiles them before attempting to
evaluate the expression. If no function or variable with the given name exists, IDL
displays an error message.

There are several ways to avoid this problem:

• Compile the lowest-level functions (those that call no other functions) first,
then higher-level functions, and finally procedures.

• Place the function in a file with the same name as the function, and place that
file in one of the directories specified by !PATH.

• Use the FORWARD_FUNCTION definition statement to inform IDL that a
given name refers to a function rather than a variable. See “Forward Function
Definition” on page 294.

• Manually compile all functions before any reference, or use
RESOLVE_ROUTINE or RESOLVE_ALL to compile functions.
Building IDL Applications Entering Procedure Definitions



308 Chapter 12: Procedures and Functions
How IDL Resolves Routines

When IDL encounters a call to a function or procedure, it must find the routine to
call. To do this, it goes through the following steps. If a given step yields a callable
routine, IDL arranges to call that routine and the search ends at that point:

1. If the routine is known to be a built in intrinsic routine (commonly referred to
as a system routine), then IDL calls that system routine.

2. If a user routine written in the IDL language with the desired name has already
been compiled, IDL calls that routine.

3. If a file with the name of the desired routine (and ending with the filename
suffix .pro) exists in the current working directory, IDL assumes that this file
contains the desired routine. It arranges to call a user routine, but does not
compile the file. The file will be compiled when IDL actually needs it. In other
words, it is compiled at run time when IDL actually attempts to call the
routine, not when the code for the call is compiled.

4. IDL searches the directories given by the !PATH system variable for a file
with the name of the desired routine ending with the filename suffix .pro. If
such a file exists, IDL assumes that this file contains the desired routine. It
arranges to call a user routine, but does not compile the file, as described in the
previous step.

5. If the above steps do not yield a callable routine, IDL either assumes that the
name is an array (due to the ambiguity inherent in allowing parenthesis to
indicate either functions or arrays) or that the desired routine does not exist
(See Chapter 5, “Arrays” for a discussion of this ambiguity). In either case, the
result is not a callable routine.
How IDL Resolves Routines Building IDL Applications



Chapter 12: Procedures and Functions 309
Parameter Passing Mechanism

Parameters are passed to IDL system and user-written procedures and functions by
value or by reference. It is important to recognize the distinction between these two
methods.

• Expressions, constants, system variables, and subscripted variable references
are passed by value.

• Variables are passed by reference.

Parameters passed by value can only be inputs to program units. Results cannot be
passed back to the caller by these parameters. Parameters passed by reference can
convey information in either or both directions. For example, consider the following
trivial procedure:

PRO ADD, A, B
A = A + B
RETURN

END

This procedure adds its second parameter to the first, returning the result in the first.
The call

ADD, A, 4

adds 4 to A and stores the result in variable A. The first parameter is passed by
reference and the second parameter, a constant, is passed by value.

The following call does nothing because a value cannot be stored in the constant 4,
which was passed by value.

ADD, 4, A

No error message is issued. Similarly, if ARR is an array, the call

ADD, ARR[5], 4

will not achieve the desired effect (adding 4 to element ARR[5]), because subscripted
variables are passed by value. The correct, though somewhat awkward, method is as
follows:

TEMP = ARR[5]
ADD, TEMP, 4
ARR[5] = TEMP
Building IDL Applications Parameter Passing Mechanism



310 Chapter 12: Procedures and Functions
Note
IDL structures behave in two distinct ways. Entire structures are passed by
reference, but individual structure fields are passed by value. See “Parameter
Passing with Structures” on page 105 for additional details.
Parameter Passing Mechanism Building IDL Applications



Chapter 12: Procedures and Functions 311
Calling Mechanism

When a user-written procedure or function is called, the following actions occur:

1. All of the actual arguments in the user-procedure call list are evaluated and
saved in temporary locations.

2. The actual parameters that were saved are substituted for the formal
parameters given in the definition of the called procedure. All other variables
local to the called procedure are set to undefined.

3. The function or procedure is executed until a RETURN or RETALL statement
is encountered. Procedures also can return on an END statement. The result of
a user-written function is passed back to the caller by specifying it as the value
of a RETURN statement. RETURN statements in procedures cannot specify a
return value.

4. All local variables in the procedure, those variables that are neither parameters
nor common variables, are deleted.

5. The new values of the parameters that were passed by reference are copied
back into the corresponding variables. Actual parameters that were passed by
value are deleted.

6. Control resumes in the calling procedure after the procedure call statement or
function reference.

Recursion

Recursion (i.e., a program calling itself) is supported for both procedures and
functions.

Example

Here is an example of an IDL procedure that reads and plots the next vector from a
file. This example illustrates using common variables to store values between calls, as
local parameters are destroyed on exit. It assumes that the file containing the data is
open on logical unit 1 and that the file contains a number of 512-element, floating-
point vectors.

;Read and plot the next record from file 1. If RECNO is specified,
;set the current record to its value and plot it.
PRO NXT, recno

;Save previous record number.
Building IDL Applications Calling Mechanism



312 Chapter 12: Procedures and Functions
COMMON NXT_COM, lastrec

;Set record number if parameter is present.
IF N_PARAMS(0) GE 1 THEN lastrec = recno

;Define LASTREC if this is first call.
IF N_ELEMENTS(lastrec) LE 0 THEN lastrec = 0

;Define file structure.
AA = ASSOC(1, FLTARR(512))

;Read and plot record.
PLOT, AA[lastrec]

;Increment record for next time.
lastrec = lastrec + 1

RETURN A

END

Once the user has opened the file, typing NXT will read and plot the next record.
Typing NXT, N will read and plot record number N.
Calling Mechanism Building IDL Applications



Chapter 12: Procedures and Functions 313
Setting Compilation Options

The COMPILE_OPT statement allows the author to give the IDL compiler
information that changes some of the default rules for compiling the function or
procedure within which the COMPILE_OPT statement appears. The syntax of
COMPILE_OPT is as follows:

COMPILE_OPT opt1 [,opt2, ..., optn]

where optn is any of the following:

• IDL2 — A shorthand way of saying:

COMPILE_OPT DEFINT32, STRICTARR

• DEFINT32 — IDL should assume that lexical integer constants are the 32-bit
LONG type rather than the default of 16-bit integers. This takes effect from the
point where the COMPILE_OPT statement appears in the routine being
compiled.

• HIDDEN — This routine should not be displayed by HELP, unless the FULL
keyword to HELP is used. This directive can be used to hide helper routines
that regular IDL users are not interested in seeing.

A side effect of making a routine hidden is that IDL will not print a “Compile
module” message for it when it is compiled from the library to satisfy a call to
it. This makes hidden routines appear built in to the user.

• OBSOLETE — If the user has !WARN.OBS_ROUTINES set to True,
attempts to compile a call to this routine will generate warning messages that
this routine is obsolete. This directive can be used to warn people that there
may be better ways to perform the desired task.

• STRICTARR — While compiling this routine, IDL will not allow the use of
parenthesis to index arrays, reserving their use only for functions. Square
brackets are then the only way to index arrays. Use of this directive will
prevent the addition of a new function in future versions of IDL, or new
libraries of IDL code from any source, from changing the meaning of your
code, and is an especially good idea for library functions.

Use of STRICTARR can eliminate many uses of the
FORWARD_FUNCTION definition.

Research Systems recommends the use of

COMPILE_OPT IDL2
Building IDL Applications Setting Compilation Options



314 Chapter 12: Procedures and Functions
in all new code intended for use in a reusable library. We further recommend the use
of

COMPILE_OPT idl2, HIDDEN

in all such routines that are not intended to be called directly by regular users (e.g.
helper routines that are part of a larger package).
Setting Compilation Options Building IDL Applications



Chapter 12: Procedures and Functions 315
Advice for Library Authors

An ordinary end user programmer needs only to solve his or her own problems to the
desired level of quality, reusability, and robustness. Life is more difficult for a library
author. In addition to the challenges facing any programmer, library authors face
additional challenges:

• The structure and organization of the library needs to encourage reuse and
generality.

• Library code must be more robust than the usual program. Stability of
implementation, and especially of interface, are very important.

• Errors must be gracefully handled whenever possible. See Chapter 17,
“Controlling Errors” for more on error control.

• The most useful libraries are written to work correctly on a wide variety of
platforms, without requiring their users to be aware of the details.

• Documentation must be provided, or the library will not find users.

• Libraries must be able to co-exist with other code over which they have no
control. They must not to alter the global environment in ways that cause
conflicts. In doing this, they must also take care to prefix the names of all
routines, common blocks, systems variables, and any other global resources
they use. This prevents a given library from conflicting with other libraries on
the same system, and protects the library from changes to IDL that may occur
in newer releases.

The need to use a unique prefix for the names in your library is very important. New
releases of IDL occur on a regular schedule. These new releases contain new
routines, system variables, common blocks, and other globally visible items. If one of
these new names is the same as a name used in your library, the conflict will prevent
your library from being usable with that new version until you take steps to change
the troublesome name. This is difficult for you and inconvenient for your users. The
use of a proper prefix eliminates this risk and makes it easier for your library to work
with new versions of IDL without the need to take special action with each new IDL
release.

In selecting a prefix for your library, you should select a name that is short,
mnemonic, and unlikely to be chosen by others. For example, such a name might use
the name of your organization or project in an abbreviated form.
Building IDL Applications Advice for Library Authors



316 Chapter 12: Procedures and Functions
Non-prefixed names, and names prefixed by “IDL” are reserved by RSI. New names
of these forms can and will appear without warning in new versions of IDL, and
should be avoided when naming new libraries. Failure to use prefixed naming can
lead to considerable difficulty once the library is established. It is important to
establish a naming convention early and enforce its systematic use throughout.
Advice for Library Authors Building IDL Applications



Part III: Creating
Applications in IDL





Chapter 13:

Creating IDL
Projects

This chapter describes the following topics.
Overview . . . . . . . . . . . . . . . . . . . . . . . . . .  320
Where to Store the Files for a Project . . . .  324
Creating a Project  . . . . . . . . . . . . . . . . . . .  326
Opening, Closing, and Saving Projects . . .  328
Modifying Project Groups  . . . . . . . . . . . .  329
Adding, Moving, and Removing Files  . . .  332
Working with Files in a Project . . . . . . . . .  335

Setting the Options for a Project  . . . . . . . . 341
Selecting the Build Order  . . . . . . . . . . . . . 344
Running an Application from a Project . . . 349
Compiling an Application from a Project  . 346
Building a Project  . . . . . . . . . . . . . . . . . . . 347
Exporting a Project  . . . . . . . . . . . . . . . . . . 350
Building IDL Applications 319



320 Chapter 13: Creating IDL Projects
Overview

IDL Project allows you to easily develop applications in IDL for distribution among
other developers, colleagues, or users who have IDL. If you want to develop
applications for users who do not have IDL previously installed on their computer,
contact your Research System sales representatives for more information on how you
can distribute an IDL Runtime version.

Working with an IDL Project allows you to easily prepare your IDL application for
distribution among other developers, colleagues, or users. You can organize, manage,
compile, run, and create distributions of all of your application files from within the
IDL Project interface. An IDL Project simplifies the process of preparing your
application for distribution by offering a visual interface to application files and by
automatically creating the script necessary for distributing a Runtime version of IDL.
Whether you have existing files that you want to package as an application or you are
building an application from the ground up, IDL Project offers the flexibility and
functionality you need in a development environment.

Access to all Files in Your Application

An IDL Project has an easy to use visual interface that allows clear organization to all
of the required files you need for your IDL application. This includes source files,
data files, image files, or any other files your application will need to run. By default,
an IDL Project contains the following categories for your files:

• IDL source code files (.pro)

• GUI files (.prc) created with IDL GUIBuilder

• Data files

• Image files

• Other files (help files, .sav files, etc.)

You can also create your own folders or rename existing folders to customize your
IDL Project.

Working with an IDL Project

An IDL Project makes it easy to add, remove, move, edit, compile, and run your
application. Additionally, Project saves all of your workspace information including
breakpoints set in source code. Since breakpoints are saved when you save your
project, this alleviates the need to reset them every time you open a source code file
Overview Building IDL Applications



Chapter 13: Creating IDL Projects 321
in your project. If you save and exit your project with open files, those same files will
be automatically opened when you re-open the project.

You can easily access files in your project by simply double-clicking on them. Source
(.pro) files are opened in the IDL Editor and .prc (IDL GUIBuilder) files are
opened in the IDL GUIBuilder. By holding down CTRL and left-clicking or by
holding down SHIFT and left-clicking, you can select multiple files in the IDL
Project window. You can then edit, move, compile, delete, or set the properties of
mutlitple files at one time.

Compiling and Running Your Application

Compiling and running applications is fast and easy. Through the Project menu, you
can compile all of your source files or just the files that you have modified before
running your application.

Build Your Application

This feature allows you to quickly test your application. Building your application
creates an IDL .sav file that contains all of the programs in your application. If you
have .prc (IDL GUIBuilder) files in your project, they will also be compiled and the
generated source (.pro) and the event (*_eventcb.pro) files will be automatically
added to your IDL Project.

Exporting Your Applications

Once you have completed your application, you can quickly and easily create a
distribution for your application so that you can distribute it to colleagues or
customers. There are options for exporting either compiled code or source code. All
your source code or compiled code (.sav files), IDL GUIBuilder files, data files, and
image files are copied to a directory you specify.

You can also create an IDL Runtime distribution to include with your application. If
you are interested in sharing your application with users who do not have IDL, please
contact your Research Systems sales representative to discuss the options available to
you.

The IDL Project Interface

The IDL Project window displays the contents of your current project and allows you
to manipulate your project.
Building IDL Applications Overview



322 Chapter 13: Creating IDL Projects
Note
If you are not using your IDL Project, you can hide the IDL Project window by
selecting File → Preferences and then clicking the Layout tab. Under the Show
Windows section, deselect the Project checkbox. When you open or create an IDL
Project, the Project window will automatically be displayed and this preference will
be reset to selected.

If you click the plus sign (Windows and Motif) or the expand arrow (Macintosh) to
expand your project, you will see the groups in your project. If you click the plus sign
(Windows and Motif) or the expand arrow (Macintosh) on a folder, you will see the
individual files that are grouped in that folder.

If you have added a file to a project and then either removed or renamed it on your
system, your IDL Project will display an icon with a red X through it to denote that it
can no longer be found. For information on how to change the path of a missing file,
see “Setting the Properties of a File” on page 336.

Figure 13-1: Project Window for Macintosh (left) and Windows (right)

Project
Window

Project
Toolbar
Overview Building IDL Applications



Chapter 13: Creating IDL Projects 323
The IDL Project toolbar offers shortcuts to frequently used menu items. When you
have a project open, the toolbar is available to help you manage your project’s
properties.

Example of a Project

A working example of a project, demo_proj.prj, has been included in the
examples directory.

Figure 13-2: Project Toolbar

Project Options
Add/Remove Files

Compile All Files

Build
Run

Display File Properties
Building IDL Applications Overview



324 Chapter 13: Creating IDL Projects
Where to Store the Files for a Project

The directory structure you use for your application files is an important
consideration when you plan to export your application. It is important to create a
directory structure which allows all files to be relative to the main project (.prj) file.
Even though you can add any file from any path to your project, the following
guidelines ensure that the application files will be found after you export your
project.

1. Create an organized directory structure containing all of your application
files. For example, you might create a directory structure similar to the
following:

Note
This example uses the same names as the default directory names displayed in the
Project window. See “Modifying Project Groups” on page 329 for more
information on the types of files stored in these groups. You do not have to name
your directories in this manner. It is more important that all application files that
you plan on exporting are organized in your local project directory.

2. Keep the project file (.prj) at the root level of all the other files and
directories in your project. As shown in the previous figure, the project file
myproject.prj is in the root level directory myproject.

Figure 13-3: Example Directory Structure
Where to Store the Files for a Project Building IDL Applications



Chapter 13: Creating IDL Projects 325
When a project’s files are exported, the files will be placed according to where they
are in relation to the .prj file, keeping the directory structure intact whenever
possible. All of the directories that are in the same directory as the .prj file will be
recreated when an IDL Project is exported.

If you have files that are stored outside of this hierarchy, they will be exported to the
top-level directory. If, for example, one of your files, intertemp.dat, exists in
D:\otherproj\data, when you export your project it will be placed in the
project’s top-level directory as follows, C:\myproject\intertemp.dat. This
may result in “File not found” errors when attempting to run your application after
exporting it.

For more information on exporting a project, see “Exporting a Project” on page 350.
Building IDL Applications Where to Store the Files for a Project



326 Chapter 13: Creating IDL Projects
Creating a Project

To create a Project, complete the following steps:

1. Select File → New → Project (on Windows and Motif) or File → New
Project (on Macintosh). The New Project dialog is displayed.

2. Select the path and name of the project file. Click Open to create your project.
A .prj extension will automatically be appended to the name you enter. You
will see that your project appears in the Project Window

3. Save your new project. Select File → Save Project.

Note
For Windows and Motif, you can only have one project open at a time. On
Macintosh, you can have multiple project windows open at the same time. Before
creating a new project on Windows or Motif, you must close any open projects.

After you have created your project, you’ll see your project displayed in the Project
Window. You will see that 5 groups have been automatically created when you
created your project.

Figure 13-4: IDL Project Window
Creating a Project Building IDL Applications



Chapter 13: Creating IDL Projects 327
The following table describes the purpose for each group:

Group Description

Source Stores IDL source code files (.pro).

GUI Stores GUI files (.prc) created using the IDL GUIBuilder.

Data Stores any data files.

Images Stores image files.

Other Stores any other files that do not apply to the other groups.

Table 13-1: Project Group Descriptions
Building IDL Applications Creating a Project



328 Chapter 13: Creating IDL Projects
Opening, Closing, and Saving Projects

After you have created a project, you can open, save, or close a project.

Opening a Project

To open a project, complete the following steps:

1. For Windows and Motif, select File → Open Project. For Macintosh, select
File → Open.

2. Select the path and name of your project file.

Tip
IDL keeps track of the most recently opened projects. You can use the File →
Recent Projects menu (on Windows and Motif) and File → Open Recent (on
Macintosh) to select a project to open.

Saving a Project

To save a project, select File → Save Project.

Closing a Project

To close a project, select File → Close Project.
Opening, Closing, and Saving Projects Building IDL Applications



Chapter 13: Creating IDL Projects 329
Modifying Project Groups

After you have created your project, you can edit the groups for that project. You can
create a new group or rename, remove, move up or down, or set to filter specific file
types for the default groups.

Modifying Project Groups on Windows and UNIX

To edit the groups in your project, complete the following steps:

1. Select Project → Groups. The Project Groups dialog is displayed:

2. Through the Project Groups dialog, you can make the following changes:

• Create a New Group — Enter a name into the Name text field and enter
the desired file filter extensions, separated by commas, into the File Filters
field. Click New to create the new group.

• Rename a Group — Select the group that you want to rename. Edit the
group name in the Name field and then click Modify.

• Move a Group — Select a group listed in the Groups list and click Move
Up or Move Down.

Figure 13-5: Project Groups Dialog for Windows and UNIX
Building IDL Applications Modifying Project Groups



330 Chapter 13: Creating IDL Projects
• Remove a Group — Select the group you want to remove from the
Groups list and click Remove.

• Change the File Filter for a Group — Enter file filter extension in the
form *.extension. If you want more than one file type to be included in this
group, separate each extension with a comma. For example, to include
JPEG and PNG files, you would enter “*.jpg, *.png”.

Note
When a file is added to a project, it is placed in the first group that meets the file
extension criteria that is specified, with the first group being the uppermost group in
the Groups list. If you have an all-inclusive filter (*), such as the “Other” group,
you must place it at the bottom of the Groups list.

3. After you have completed making your changes, click OK to exit the Project
Groups dialog.

Modifying Project Groups on Macintosh

To edit the groups in your project, complete the following steps:

1. Select Project → Groups. The Groups dialog is displayed:

Figure 13-6: Project Groups Dialog for Macintosh
Modifying Project Groups Building IDL Applications



Chapter 13: Creating IDL Projects 331
2. Through the Project Groups dialog, you can make the following changes:

• Create a New Group — Enter a name into the Group Name text field.
Enter any filters you want for this group (see “Change the File Filter for a
Group” below). Click New to create the new group.

• Rename a Group — Select the group that you want to rename. Edit the
group name in the Group Name field.

• Move a Group — Select a group listed in the Groups list and drag it up or
down to the desired location.

• Delete a Group — Select the group you want to remove from the Groups
list and click Delete.

• Change the File Filter for a Group — There are two ways of specifying
file filters:

By File Extension — Enter file filter extension in the Group File Filters
field in the form *.extension. If you want more than one file type to be
included in this group, separate each extension with a comma. For
example, to include JPEG and PNG files, you would enter “*.jpg,
*.png”.

By File Creator/Type — Click in the Group File Types list box and click
Same As. Select a file that represents the File and Creator Type that you
want to include in the filter. Click Open. The new filter displays in the
Group File Types list box. If you have entered any file extension filters,
these will be processed before any file creator/type filters are processed.

Note
When a file is added to a project, it is placed in the first group that meets the file
extension criteria that is specified, with the first group being the uppermost group in
the Groups list followed by any file creator type listed in the Group File Types list.
If you have an all-inclusive filter (*), such as the “Other” group, you must place it at
the bottom of the Groups list.

3. After you have completed making your changes, click OK to exit the Project
Groups dialog.
Building IDL Applications Modifying Project Groups



332 Chapter 13: Creating IDL Projects
Adding, Moving, and Removing Files

After you have created a project, you can easily add, move, and remove application
files.

Adding Files

To add files to your project, complete the following steps:

1. Open your project. Select File → Open Project. Select the path and name of
your project file.

2. Click Project → Add/Remove Files... (on Windows and Motif) or Project →
Add Files... (on Macintosh). The Add/Remove Files dialog is displayed.

3. Select the path and name of the file you want to add to your project. From the
dropdown list, select the group you want to add the file to and click the Add
button. You will see the file added to the list of current files in your project.

Tip
You can also add files to your project by dragging and dropping the files from any
file manager. If you already have the file open that you want to add to your project,

Figure 13-7: Add/Remove Dialog

Current directory

Folder/File list in the

File to add/remove

Filter for listing different

Current Files in project

file types

Select to add a file to
a specific group

current directory
Adding, Moving, and Removing Files Building IDL Applications



Chapter 13: Creating IDL Projects 333
on Windows and UNIX platforms you can right click in the editor window and
select Add to Current Project from the shortcut menu. On Macintosh platforms,
you can add the open file by selecting Project → Add Window. On some Motif
platforms, dragging and dropping is not supported. In this case, use the
Add/Remove... dialog.

4. Continue to add the files you want to include in your project. Then click OK.

5. You can expand the listings in the Project window to see the files you have
added.

6. Save your project file by selecting File → Save Project.

Moving Files

When you add a file to your project, it will be added to the appropriate group (based
on the groups’ file filters). If you want the file to exist in a different group, you can
move it to that group. To move a file, complete the following steps:

1. Open your project. Select File → Open Project (on Windows and Motif) or
File → Open (on Macintosh). Select the path and name of your project file.

2. Click on the plus sign (on Windows and Motif) or the expand arrow (on
Macintosh) to expand the listing of the project files until you see the file you
want to move.

3. To move the file, select the file and then drag it to a different group or right
click over the file you want to move and select Move To... from the shortcut
menu and then select the different group.

Note
On some Motif platforms, dragging and dropping is not supported. In this case, use
the Move To... menu item on the shortcut menu.

4. Save your project file by selecting File → Save Project.

Note
When moving a file in your project, it does not change the actual path of the file, it
only changes the group in which the file appears within your project.
Building IDL Applications Adding, Moving, and Removing Files



334 Chapter 13: Creating IDL Projects
Removing Files

When you no longer want a file to be in your project, you can remove it. When you
remove a file from your project, it does not delete the file on your disk, it only deletes
the reference to the file from your project.

On Windows and Motif

To remove files from your project, complete the following steps:

1. Open your project. Select File → Open Project and select the path and name
of your project file.

2. Click Project → Add/Remove Files... The Add/Remove Files dialog is
displayed.

3. Click on the file you want to remove from your project in the current files
listing. Click Remove.

Tip
On Windows and Motif, you can use the shortcut menu to remove a file. Right click
over the file and then select Remove. On Windows, you can also use the Delete key
to remove files. Select the file by left-clicking over the file and then press the Delete
key.

4. Save your project file by selecting File → Save Project.

On Macintosh

To remove files from your project, complete the following steps:

1. Open your project. Select File → Open and select the path and name of your
project file.

2. Select the file you want to remove.

3. Select Project → Remove Selected Item.

Tip
On Macintosh, you can use the Command+Delete key sequence to remove files.
Select the file by clicking over the file and then press Command+Delete.

4. Save your project file by selecting File → Save Project.
Adding, Moving, and Removing Files Building IDL Applications



Chapter 13: Creating IDL Projects 335
Working with Files in a Project

Once you have added all of the files in your application to a project, you can access
those files through the project window.

Editing a Source File

All source files that can be opened in IDL, .pro and .prc files (IDL GUIBuilder
files can be opened on Windows only), can be opened directly through the project
windows. To open a file for editing, complete the following steps:

1. Open your project. Select File → Open Project (on Windows and Motif) or
File → Open (on Macintosh). Select the path and name of your project file.

2. Access the shortcut menu by right-clicking (for Windows and UNIX) or
holding down CTRL and clicking (for Macintosh) over the file you want to
open. Select Edit from the shortcut menu. Source files (.pro) are opened in
the IDL editor and GUIBuilder files (.prc) are opened in the IDL GUIBuilder

Tip
You can also edit a .pro or .prc file by double-clicking on the filename. On
Windows you can also drag the file from the Project window to the IDL Editor
window to open the file.

Compiling a File

All source files can be compiled through the project window. To compile a file,
complete the following steps:

1. Open your project. Select File → Open Project (on Windows and Motif) or
File → Open (on Macintosh). Select the path and name of your project file.

2. Access the shortcut menu by right-clicking (for Windows and UNIX) or
holding down CTRL and right-clicking (for Macintosh) over the file you want
to compile. Select Compile from the shortcut menu. The file is compiled.

For more information on how to compile all the files in your project or just the files
that have been recently modified, see “Compiling an Application from a Project” on
page 346.
Building IDL Applications Working with Files in a Project



336 Chapter 13: Creating IDL Projects
Note
On Macintosh, you will see a red check mark to the left of each file that has not
been compiled after it has been modified.

Testing a File

All IDL GUIBuilder files (.prc) can be run under test mode directly through a
project. To run a .prc file in test mode, complete the following steps:

1. Open your project. Select File → Open Project (on Windows and Motif) or
File → Open (on Macintosh). Select the path and name of your project file.

2. Access the shortcut menu by right-clicking (for Windows and UNIX) or by
holding down CTRL and clicking (for Macintosh) over the file you want to
test. Select Test from the shortcut menu. The file is run in test mode.

For more information on running .prc files in test mode, see “Running the
Application in Test Mode” on page 501.

Tip
You can also compile and run IDL GUIBuilder files on any platform by building
your project. For more information, see “Building a Project” on page 347.

Setting the Properties of a File

Each file in a project has properties. To view the properties of a file, access the
shortcut menu by right-clicking (for Windows and UNIX) or Control+clicking (for
Macintosh) over the file you want to test. Select Properties from the shortcut menu.
Working with Files in a Project Building IDL Applications



Chapter 13: Creating IDL Projects 337
Alternatively, you can select the file and click the File Properties toolbar button. The
File Properties dialog appears as shown in the following figure.

The following table describes each property in detail:

Figure 13-8: File Properties Dialog

Property Description

File name The name of the file. (This field is read only.)

Group The name of the group in which the file resides. (This field is
read only.)

Path The path of the file. (This field is read only.)

File Found This box appears grayed out when a file is found. If the file is
not found, clicking on this checkbox displays a dialog so that
you can specify the path of the file.

Table 13-2: File Properties
Building IDL Applications Working with Files in a Project



338 Chapter 13: Creating IDL Projects
To set the properties for a file, complete the following steps:

Note
To set the properties of multiple files at a single time, see “Modifying Properties of
Multiple Files” on page 339.

1. Open your project. Select File → Open Project (on Windows and Motif) or
File → Open (on Macintosh). Select the path and name of your project file.

2. Click on the plus sign (on Windows and Motif) or the expand arrow (on
Macintosh) to expand the listing of the project files until you see the file you
want to change.

3. Access the shortcut menu by right-clicking (for Windows and UNIX) or
holding down CTRL and clicking (for Macintosh) over the file for which you
want to change the properties. Select Properties from the menu. The File
Properties dialog is displayed.

4. Select whether to compile the file. Check the Compile File checkbox to mark
the file for compiling when running or building an application.

Note
On Macintosh, the Compile File option can be selected in the Project Window. If
you want the file to be compiled, make sure that a black dot appears to the far right

Compile File Indicates whether or not to compile the file when running or
building. For example, you may have included files for your
main program that you do not want compiled. Leaving this
check box blank indicates that you do not want this file
compiled.

Note - Non-source files such as data files and image files will
be automatically excluded from compilation.

Export Indicates whether or not to export the file when exporting a
project. Some files, such as data files that you need to use
when creating your application, are files that you do not want
to export. When checked, this file will be exported.

Property Description

Table 13-2: File Properties
Working with Files in a Project Building IDL Applications



Chapter 13: Creating IDL Projects 339
of the file name. If the dot is not displayed, click to the far right of the file name,
under the exploding dot symbol, to mark the file for compiling.

5. Select whether to export the file. You may select to export files such as data
files if they are a necessary component of your application. Other data files
which you have used for development but that aren’t necessary need not be
selected. Check the Export checkbox to export the file with your distribution.
For information on arranging files for successful exporting, see“Where to
Store the Files for a Project” on page 324.

Note
On Macintosh, the Export option can also be selected/deselected by holding down
CTRL and right-clicking over the file and selecting Export from the menu. If there
is a check mark next to Export, the file will be exported.

6. Click OK.

7. Save your project file by selecting File → Save Project.

Modifying Properties of Multiple Files

To set the properties of a number of files at a single time, hold down CTRL and right-
click (Windows and Motif) or hold down Command and click (Macintosh) to select
multiple files in the Project window. Click the File Properties toolbar button. In the
dialog which appears, you can select the Compile File or Export properties of
“Multiple Files.”

Figure 13-9: Multiple File Properties Dialog
Building IDL Applications Working with Files in a Project



340 Chapter 13: Creating IDL Projects
In addition to setting file properties, you can also set the properties of your project.
Through the Project Options dialog, you can control run and compile commands as
well as selecting the type of project to create. See “Setting the Options for a Project”
on page 341 for instructions.
Working with Files in a Project Building IDL Applications



Chapter 13: Creating IDL Projects 341
Setting the Options for a Project

The options for a project describe how to run, compile, and build the project. To set
the options for your project, complete the following steps:

1. Open your project. Select File → Open Project. Select the path and name of
your project file.

2. Click Project → Options... The Project Options dialog is displayed.

3. Set the options based upon the information in the following table:

Figure 13-10: Project Options Dialog

Option Description

Name Specifies the project name. (This field is read only.)

Path Specifies the path of the project. (This field is read only.)

Table 13-3: Project Options
Building IDL Applications Setting the Options for a Project



342 Chapter 13: Creating IDL Projects
Project Type Specifies how the project will run or build. The available
formats are:

• Source File (.pro).

• Save File (.sav).

• Licensed Save File (.sav)

Note - The Licensed Save File option is grayed out if you do
not have an Unlimited Right to Distribute license. For more
information on how to distribute IDL Runtime with your
application, contact your Research Systems sales
representative.

For more information on building and running projects, see
“Building a Project” on page 347 or “Running an Application
from a Project” on page 349.

Run Command Specifies the IDL command to run your application. The
default is the name of the project. This can be any valid IDL
command including .sav or .pro files (these can be files
that are included or not included in your project.) Typically
this is the main program in your application.

Tip - You can use the %? command stream substitution to call
a dialog to enter a value or values to pass to the called
program. For example, if you have a program named “main”
and it requires the argument “x” to be passed to it, then you
can enter the following for the Run Command:

main, %?(Enter the value for x, x)

For more information on how to run your application, see
“Running an Application from a Project” on page 349.

Option Description

Table 13-3: Project Options
Setting the Options for a Project Building IDL Applications



Chapter 13: Creating IDL Projects 343
4. After completing any changes, click OK.

5. Save your project file by selecting File → Save Project.

Note
In addition to setting options for a project, you can also set an individual file’s
properties. For more information, see “Setting the Properties of a File” on page 336.

Build Command Specifies the IDL command to build the application. If left
blank, the files in the project are built according to the Project
Type specified and are compiled (if applicable) in the order
specified under Build Order. For more information, see
“Selecting the Build Order” on page 344.

You can enter any valid IDL command including .sav or
.pro files. You can also enter a batch file using @filename in
order to perform other operations (for example, running a Perl
script on your source or data files before compiling). For more
information on batch scripts, see the Using IDL manual.

Save File Specifies the name of the .sav file to create when building
your project. For more information on building a project, see
“Building a Project” on page 347.

Note - This field is grayed out if you have selected the Source
File (.pro ) Project Type.

Option Description

Table 13-3: Project Options
Building IDL Applications Setting the Options for a Project



344 Chapter 13: Creating IDL Projects
Selecting the Build Order

The build order of a project determines the order in which the files will be compiled.
In some cases, you might not be able to run all the files in your project because of
dependencies on the order in which they are compiled. For example, if the file
main.pro contains:

Pro main
x=1
y=AddTen(x)
Print, x

End

and file AddTen.pro contains:

Function AddTen, x
x=x+10

End

IDL can’t tell if the statement y=AddTen(x) is referring to a variable named AddTen
or a function named AddTen. Unless AddTen is compiled before main, you will get a
“Variable undefined” error message.

To select the build order for the files in your project, complete the following steps:

1. Open your project. Select File → Open Project. Select the path and name of
your project file.

2. Click the Build Order tab in the Project window.

3. Move the files to the order in which you want to compile them. The topmost
file listed in the Build Order window will be compiled first. On Windows and
Macintosh, you can move a file by dragging and dropping it to the desired
location. On UNIX, first select a file by left-clicking it, then change the order
by using the up and down arrows located in the bottom left corner of the
Selecting the Build Order Building IDL Applications



Chapter 13: Creating IDL Projects 345
Project window. For example, using the scenario stated previously, the Build
Order would look like the following:

4. Save your project file by selecting File → Save Project.

Note
If the Compile File option is deselected, the file will not show in the Build Order
window. For more information on file properties, see “Setting the Properties of a
File” on page 336.

Figure 13-11: Build Order Window
Building IDL Applications Selecting the Build Order



346 Chapter 13: Creating IDL Projects
Compiling an Application from a Project

You can compile all of the source files in your project, or just the files that you have
recently modified. A modified file is one that has been modified and then saved (on
Macintosh, the file does not have to be saved). If you have included GUIBuilder files
in your project, see the following section, “About IDL GUIBuilder Files”.

Note
If you have dependencies on the order in which your files are compiled, see
“Selecting the Build Order” on page 344.

To Compile All Files in Your Project

1. Open your project. Select File → Open Project. Select the path and name of
your project file.

2. To compile all the files in your project on Windows and Motif, select
Project → Compile → All Files. On Macintosh, while holding down the
Option key, select Project → Compile All Files.

To Compile Only Modified Files in Your Project

1. Open your project. Select File → Open Project. Select the path and name of
your project file.

2. To compile just the files that have been modified since the last compilation on
Windows and Motif, select Project → Compile → Modified Files.

Note
If you have dependencies on the order in which your files are compiled, see
“Selecting the Build Order” on page 344.
Compiling an Application from a Project Building IDL Applications



Chapter 13: Creating IDL Projects 347
Building a Project

Building a project creates a .sav file of your project or compiles your project based
upon the options you have set for your project. If you have specified:

• Source File — The IDL session is reset (all procedures, functions, main level
variables, and common blocks are deleted from memory), all files in the
project are compiled, and all undefined but referenced functions and
procedures are resolved.

For more information on resetting an IDL session, see
.FULL_RESET_SESSION in the IDL Reference Guide. For more information
on resolving undefined but referenced functions, see RESOLVE_ALL in the
IDL Reference Guide.

• Save File — The IDL session is reset (all procedures, functions, main level
variables, and common blocks are deleted from memory so that unwanted
items are not included in your .sav file), all files in the project are compiled,
all undefined but referenced functions and procedures are resolved, and all the
functions and procedures are saved into the file you specified in the project’s
options.

The save file is created using the XDR and COMPRESS options. For more
information, see SAVE in the IDL Reference Guide.

• Licensed Save File — The IDL session is reset (all procedures, functions,
main level variables, and common blocks are deleted from memory so that
unwanted items are not included in your .sav file), all files in the project are
compiled, all undefined but referenced functions and procedures are resolved,
all the functions and procedures are saved into the file specified in the project’s
options, and embedded license information is added to the save file.

For more information on how to create a licensed save file and distribute IDL
Runtime with your application, contact your Research Systems sales
representative.

Note
For more information on project options, see “Setting the Options for a Project” on
page 341.

To build your project, complete the following steps:
Building IDL Applications Building a Project



348 Chapter 13: Creating IDL Projects
1. Open your project. Select File → Open Project. Select the path and name of
your project file.

2. Select Project → Build. A dialog appears, confirming that you want to reset
your session.

This will delete all procedures, functions, main level variables and common
blocks from memory. If you have the save file option selected for your project,
this will ensure that these items will not be included in your .sav file. If you
have the source file option selected for your project, this will ensure that you
have a clean environment in which to run and test your application.

3. Click OK.

Your project has been built.

About IDL GUIBuilder Files

When you build your IDL Project, the IDL GUIBuilder (.prc) files are
automatically compiled and the resulting source (.pro) and event
(*_eventcb.pro) files are automatically added to your project.

For more information on the IDL GUIBuilder, see Chapter 21, “Using the
IDL GUIBuilder”.
Building a Project Building IDL Applications



Chapter 13: Creating IDL Projects 349
Running an Application from a Project

After compiling your project, you can run your application. What happens when you
run your project depends upon the project options you have selected:

• If you have selected your execution file format as source file, each file in your
project is compiled and then run using the command you specified as the run
command.

• If you have selected your execution file format as a .sav file, the most
recently compiled version is run using the command you specified as the run
command.

Note
You must have compiled or built your application before running it.

For more information on setting options for your project, see “Setting the Options for
a Project” on page 341.

To run your application, complete the following steps:

1. Open your project. Select File → Open Project. Select the path and name of
your project file.

2. Select Project → Run.
Building IDL Applications Running an Application from a Project



350 Chapter 13: Creating IDL Projects
Exporting a Project

Once you have completed your application, you can quickly and easily create an IDL
Runtime distribution or you can easily move your application to another platform or
distribute your source code to colleagues by exporting your project. All your source
code or compiled code (.sav files), IDL GUIBuilder files, data files, and image files
are copied to a directory you specify.

What is exported is dependent upon the options you have selected for the project
from the Project → Options dialog. If you have selected:

• Source File — Your project’s source, IDL GuiBuilder, data, bitmaps, and any
other files listed in your project will be exported along with your IDL Project
file to a directory you specify so that you can move them to another platform.
For information on how to set up a directory structure so that your IDL Project
can find the source files after exporting, see “Where to Store the Files for a
Project” on page 324.

• Save File — The .sav file for your project as well as data, bitmaps, and any
other .sav files included in your project will be exported. You will also be
given the option of exporting an IDL Runtime distribution for the platform to
which you are exporting. Contact your sales person for options if you want to
include an IDL Runtime distribution with your application. For information on
how to set up a directory structure so that all files will retain their relative paths
after exporting, see “Where to Store the Files for a Project” on page 324.

• Licensed Save File — The .sav file (with an embedded license) for your
project as well as data, images, and any other .sav files included in your
project will be exported. You will also be given the option of exporting an IDL
Runtime distribution for the platform you are exporting on. For information on
how to set up a directory structure so that all files will retain their relative paths
after exporting, see “Where to Store the Files for a Project” on page 324.

For more information on how to create a licensed save file and distribute IDL
Runtime with your application, contact your Research Systems sales
representative.

For more information on the options for a project, see “Setting the Options for a
Project” on page 341.

Exporting Your Project’s Source Files

To export your project’s source files, complete the following steps:
Exporting a Project Building IDL Applications



Chapter 13: Creating IDL Projects 351
1. Open your project. Select File → Open Project. Select the path and name of
your project file.

2. Select Project → Export. The Browse for Folder dialog displays.

3. Select the folder to which you want to export the project and click OK.

Your project has now been exported. When moving a project and its source files from
one platform to another, there are a few items to be aware of:

• Project workspace information such as which files are open, etc. will not move
from platform to platform.

• Problems with paths can occur if they are not relative paths. If you open a
project and find that it cannot find the source file, you can fix this by changing
the properties of the file. For more information, see “Where to Store the Files
for a Project” on page 324 and “Setting the Properties of a File” on page 336.

Exporting Your Project to a Save File

To export your project to a save file, complete the following steps:

1. Open your project. Select File → Open Project. Select the path and name of
your project file.

2. Select Project → Export. The Browse for Folder dialog displays.

3. Select the folder to which you want to export the project and click OK.

4. A dialog is displayed asking if you want to export an IDL Runtime distribution
with your .sav file. Select No to not include the distribution.

Your project has now been exported.

Note
If you are interested in including a Runtime version of IDL with you application,
contact your Research System sales representatives for more information.
Building IDL Applications Exporting a Project



352 Chapter 13: Creating IDL Projects
Exporting a Project Building IDL Applications



Chapter 14:

Writing Efficient IDL
Programs

The following topics are covered in this chapter:
Overview . . . . . . . . . . . . . . . . . . . . . . . . . .  354
Expression Evaluation Order  . . . . . . . . . .  355
Avoid IF Statements  . . . . . . . . . . . . . . . . .  356
Use Vector and Array Operations . . . . . . .  357
Use System Functions and Procedures . . .  359

Use Constants of the Correct Type  . . . . . . 360
Eliminate Invariant Expressions  . . . . . . . . 361
Virtual Memory  . . . . . . . . . . . . . . . . . . . . . 362
IDL Implementation  . . . . . . . . . . . . . . . . . 368
The IDL Code Profiler . . . . . . . . . . . . . . . . 369
Building IDL Applications 353



354 Chapter 14: Writing Efficient IDL Programs
Overview

This chapter presents ideas to consider when trying to create the most efficient
programs possible, and discusses how to analyze the performance of your
applications.

Knowledge of IDL’s implementation and the pitfalls of virtual memory can be used
to greatly improve the efficiency of IDL programs. In IDL, complicated computations
can be specified at a high level. Therefore, inefficient IDL programs can suffer severe
speed penalties — perhaps much more so than with most other languages.

Techniques for writing efficient programs in IDL are identical to those in other
computer languages with the addition of the following simple guidelines:

• Use array operations rather than loops wherever possible. Try to avoid loops
with high repetition counts.

• Use IDL system functions and procedures wherever possible.

• Access array data in machine address order.

Attention also must be given to algorithm complexity and efficiency, as this is usually
the greatest determinant of resources used.
Overview Building IDL Applications



Chapter 14: Writing Efficient IDL Programs 355
Expression Evaluation Order

The order in which an expression is evaluated can have a significant effect on
program speed. Consider the following statement, where A is an array:

;Scale A from 0 to 16.
B = A * 16. / MAX(A)

This statement first multiplies every element in A by 16 and then divides each
element by the value of the maximum element. The number of operations required is
twice the number of elements in A. A much faster way of computing the same result
is used in the following statement:

;Scale A from 0 to 16 using only one array operation.
B = A * (16./MAX(A))

or

;Operators of equal priority are evaluated from left to right. Only
;one array operation is required.
B = 16./MAX(A) * A

The faster method only performs one operation for each element in A, plus one scalar
division. To see the speed difference on your own machine, execute the following
statements:

A = RANDOMU(seed, 512, 512)
t1 = SYSTIME(1) & B = A*16./MAX(A) & t2 = SYSTIME(1)
PRINT, 'Time for inefficient calculation: ', t2-t1
t3 = SYSTIME(1) & B = 16./MAX(A)*A & t4 = SYSTIME(1)
PRINT, 'Time for efficient calculation: ', t4-t3
Building IDL Applications Expression Evaluation Order



356 Chapter 14: Writing Efficient IDL Programs
Avoid IF Statements

Programs with array expressions run faster than programs with scalars, loops, and IF
statements. Some examples of slow and fast ways to achieve the same results follow.

Example—Summing Elements

The first example adds all positive elements of array B to array A.

;Using a loop will be slow.
FOR I = 0, (N-1) DO IF B[I] GT 0 THEN A[I] = A[I] + B[I]

;Fast way: Mask out negative elements using array operations.
A = A + (B GT 0) * B

;Faster way: Add B > 0.
A = A + (B > 0)

When an IF statement appears in the middle of a loop with each element of an array
in the conditional, the loop can often be eliminated by using logical array
expressions.

Example—Using Array Operators and the WHERE Function

In the example below, each element of C is set to the square-root of A if A[I] is
positive; otherwise, C[I] is set to minus the square-root of the absolute value of A[I].

;Using an IF statement is slow.
FOR I=0,(N-1) DO IF A[I] LE 0 THEN $

C[I]=-SQRT(-A[I]) ELSE C[I]=SQRT(A[I])

;Using an array expression is much faster.
C = ((A GT 0) * 2-1) * SQRT(ABS(A))

The expression (A GT 0) has the value 1 if A[I] is positive and has the value 0 if
A[I]is not. (A GT 0)* 2 - 1 is equal to +1 if A[I] is positive or -1 if A[I] is negative,
accomplishing the desired result without resorting to loops or IF statements.

Another method is to use the WHERE function to determine the subscripts of the
negative elements of A and negate the corresponding elements of the result.

;Get subscripts of negative elements.
negs = WHERE(A LT 0)
;Take root of absolute value.
C = SQRT(ABS(A))
;Negate elements in C corresponding to negative elements in A.
C[negs] = -C[negs]
Avoid IF Statements Building IDL Applications



Chapter 14: Writing Efficient IDL Programs 357
Use Vector and Array Operations

Whenever possible, vector and array data should always be processed with IDL array
operations instead of scalar operations in a loop. For example, consider the problem
of inverting a 512 × 512 image. This problem arises because approximately half the
available image display devices consider the origin to be the lower-left corner of the
screen, while the other half recognize it as the upper-left corner.

The following example is for demonstration only. The IDL system variable !ORDER
should be used to control the origin of image devices. The ORDER keyword to the
TV procedure serves the same purpose.

A programmer without experience in using IDL might be tempted to write the
following nested loop structure to solve this problem:

FOR I = 0, 511 DO FOR J = 0, 255 DO BEGIN

;Temporarily save pixel image.
temp = image[I, J]

;Exchange pixel in same column from corresponding row at bottom
image[I, J] = image[I, 511 - J]

image[I, 511-J] = temp

ENDFOR

A more efficient approach to this problem capitalizes on IDL’s ability to process arrays as
a single entity:

FOR J = 0, 255 DO BEGIN

;Temporarily save current row.
temp = image[*, J]

;Exchange row with corresponding row at bottom.
image[*, J] = image[*, 511-J]

image[*, 511-J] = temp

ENDFOR

At the cost of using twice as much memory, processing can be simplified even further
by using the following statements:

;Get a second array to hold inverted copy.
image2 = BYTARR(512, 512)
Building IDL Applications Use Vector and Array Operations



358 Chapter 14: Writing Efficient IDL Programs
;Copy the rows from the bottom up.
FOR J = 0, 511 DO image2[*, J] = image[*, 511-J]

Even more efficient is the single line:

image2 = image[*, 511 - INDGEN(512)]

that reverses the array using subscript ranges and array-valued subscripts.

Finally, using the built-in ROTATE function is quickest of all:

image = ROTATE(image, 7)

Inverting the image is equivalent to transposing it and rotating it 270 degrees
clockwise.
Use Vector and Array Operations Building IDL Applications



Chapter 14: Writing Efficient IDL Programs 359
Use System Functions and Procedures

IDL supplies a number of built-in functions and procedures to perform common
operations. These system-supplied functions have been carefully optimized and are
almost always much faster than writing the equivalent operation in IDL with loops
and subscripting.

Example

A common operation is to find the sum of the elements in an array or subarray. The
TOTAL function directly and efficiently evaluates this sum at least 10 times faster
than directly coding the sum.

;Slow way: Initialize SUM and sum each element.
sum = 0. & FOR I = J, K DO sum = sum + array[I]

;Efficient, simple way.
sum = TOTAL(array[J:K])

Similar savings result when finding the minimum and maximum elements in an array
(MIN and MAX functions), sorting (SORT function), finding zero or nonzero
elements (WHERE function), etc.
Building IDL Applications Use System Functions and Procedures



360 Chapter 14: Writing Efficient IDL Programs
Use Constants of the Correct Type

As explained in Chapter 3, “Constants and Variables”, the syntax of a constant
determines its type. Efficiency is adversely affected when the type of a constant must
be converted during expression evaluation. Consider the following expression:

A + 5

If the variable A is of floating-point type, the constant 5 must be converted from short
integer type to floating point each time the expression is evaluated.

The type of a constant also has an important effect in array expressions. Care must be
taken to write constants of the correct type. In particular, when performing arithmetic
on byte arrays with the intent of obtaining byte results, be sure to use byte constants;
e.g., nB. For example, if A is a byte array, the result of the expression A + 5B is a
byte array, while A + 5 yields a 16-bit integer array.
Use Constants of the Correct Type Building IDL Applications



Chapter 14: Writing Efficient IDL Programs 361
Eliminate Invariant Expressions

Expressions whose values do not change inside a loop should be moved outside the
loop. For example, in the loop:

FOR I = 0, N - 1 DO arr[I, 2*J-1] = ...,

the expression (2*J-1) is invariant and should be evaluated only once before the
loop is entered:

temp = 2*J-1
FOR I = 0, N-1 DO arr[I, temp] = ....
Building IDL Applications Eliminate Invariant Expressions



362 Chapter 14: Writing Efficient IDL Programs
Virtual Memory

The IDL programmer and user must be cognizant of the characteristics of virtual
memory computer systems to avoid penalty. Virtual memory allows the computer to
execute programs that require more memory than is actually present in the machine
by keeping those portions of programs and data that are not being used on the disk.
Although this process is transparent to the user, it greatly affects the efficiency of the
program.

IDL arrays are stored in dynamically allocated memory. Although the program can
address large amounts of data, only a small portion of that data actually resides in
physical memory at any given moment; the remainder is stored on disk. The portion
of data and program code in real physical memory is commonly called the working
set.

When an attempt is made to access a datum in virtual memory not currently residing
in physical memory, the operating system suspends IDL, arranges for the page of
memory containing the datum to be moved into physical memory and then allows
IDL to continue. This process involves deciding where the datum should go in
memory, writing the current contents of the selected memory page out to the disk,
and reading the page with the datum into the selected memory page. A page fault is
said to occur each time this process takes place. Because the time required to read
from or write to the disk is very large in relation to the physical memory access time,
page faults become an important consideration.

When using IDL with large arrays, it is important to have access to sufficient physical
and virtual memory. Given a suitable amount of physical memory, the parameters that
regulate virtual memory require adjustment to assure best performance. These
parameters are discussed below. See “Virtual Memory System Parameters” on
page 365. If you suspect that lack of physical or virtual memory is causing problems,
consult your system manager.

Access Large Arrays by Memory Order

When an array is larger than or close to the working set size (i.e., the amount of
physical memory available for the process), it is preferable to access it in memory
address order.

Consider the process of transposing a large array. Assume the array is a 512 × 512
byte image with a 100 kilobyte working set. The array requires 512 × 512, or
approximately 250 kilobytes. Less than half of the image can be in memory at any
one instant.
Virtual Memory Building IDL Applications



Chapter 14: Writing Efficient IDL Programs 363
In the transpose operation, each row must be interchanged with the corresponding
column. The first row, containing the first 512 bytes of the image, will be read into
memory, if necessary, and written to the first column. Because arrays are stored in
row order (the first subscript varies the fastest), one column of the image spans a
range of addresses almost equal to the size of the entire image. To write the first
column, 250,000 bytes of data must be read into physical memory, updated, and
written back to the disk. This process must be repeated for each column, requiring the
entire array be read and written almost 512 times. The amount of time required to
transpose the array using the method described above is relatively large.

In contrast, the IDL TRANSPOSE function transposes large arrays by dividing them
into subarrays smaller than the working set size enabling it to transpose a 512 × 512
image in a much smaller amount of time.

Example

Consider the operation of the following IDL statement:

FOR X = 0, 511 DO FOR Y = 0, 511 DO ARR[X, Y] = ...

This statement requires an extremely large execution time because the entire array
must be transferred between memory and the disk 512 times. The proper form of the
statement is to process the points in address order by using the following statement:

FOR Y = 0, 511 DO FOR X = 0, 511 DO ARR[X, Y] = ...

This approach cuts computing time by a factor of at least 50.

Running Out of Virtual Memory

If you process large images with IDL and use the vendor-supplied default system
parameters (especially if you have a small system), you may encounter the error
message

% Unable to allocate memory.

This error message means that IDL was unable to obtain enough virtual memory to
hold all your data. Whenever you define an array, image, or vector, IDL asks the
operating system for some virtual memory in which to store the data. When you
reassign the variable, IDL frees the memory for re-use.

The first time you get this error, you will either have to stop what you are doing and
exit IDL or delete unused variables containing images or arrays, thereby releasing
enough virtual memory to continue. You can delete the memory allocation of array
variables by setting the variable equal to a scalar value.
Building IDL Applications Virtual Memory



364 Chapter 14: Writing Efficient IDL Programs
If you need to exit IDL, you first should use the SAVE procedure to save your
variables in an IDL save file. Later, you will be able to recover those variables from
the save file using the RESTORE procedure.

The HELP,/MEMORY command tells you how much virtual memory you have
allocated. For example, a 512 × 512 complex floating array requires 8*5122 bytes or
about 2 megabytes of virtual memory because each complex element requires 8
bytes. Deleting a variable containing a 512 × 512 complex array will increase the
amount of virtual memory available by this amount.

Minimizing Virtual Memory

If virtual memory is a problem, try to tailor your programming to minimize the
number of images held in IDL variables. Keep in mind that IDL creates temporary
arrays to evaluate expressions involving arrays. For example, when evaluating the
statement

A = (B + C) * (E + F)

IDL first evaluates the expression B + C and creates a temporary array if either B or C
are arrays. In the same manner, another temporary array is created if either E or F are
arrays. Finally, the result is computed, the previous contents of A are deleted, and the
temporary area holding the result is saved as variable A. Therefore, during the
evaluation of this statement, enough virtual memory to hold two arrays’ worth of data
is required in addition to normal variable storage.

It is a good idea to delete the allocation of a variable that contains an image and that
appears on the left side of an assignment statement, as shown in the following
program.

;Loop to process an image.
FOR I = ... DO BEGIN

;Processing steps.
...

;Delete old allocation for A.
A = 0

;Compute image expression and store.
A = Image_Expression

...

;End of loop.
ENDFOR
Virtual Memory Building IDL Applications



Chapter 14: Writing Efficient IDL Programs 365
The purpose of the statement A=0 is to free the old memory allocation for the
variable A before computing the image expression in the next statement. Because the
old value of A is going to be replaced in the next statement, it makes sense to free A’s
allocation first.

The TEMPORARY Function

Another way to minimize memory use when performing operations on large arrays is
to use the TEMPORARY function. TEMPORARY returns the value of its argument
as a temporary variable and makes the argument undefined. In this way, you avoid
making a new copy of temporary results. For example, assume that A is a large array.
To add 1 to each element in A, you could enter:

A = A+1

However, this statement creates a new array for the result of the addition and assigns
the result to A before freeing the old allocation of A. Hence, the total storage required
for the operation is twice the size of A. The statement:

A = TEMPORARY(A) + 1

requires no additional space.

Virtual Memory System Parameters

The first step is to determine how much virtual memory you require. For example, if
you compute complex Fast Fourier Transforms (FFT) on 512 × 512 images, each
complex image requires 2 megabytes. Suppose that during a typical session you need
to have four images stored in variables and require enough memory for two images to
hold temporary results, resulting in a total of six images or 12 megabytes. Rounding
up to 16 megabytes gives a reasonable goal. The following SYSGEN parameters and
quotas should be changed to increase the amount of virtual memory available.

Note
For UNIX, The size of the swapping area(s) determines how much virtual memory
your process is allowed. To increase the amount of available virtual memory, you
must increase the size of the swap device (sometimes called the swap partition).
Increasing the size of a swap partition is a time-consuming task that should be
planned carefully. It usually requires saving the contents of the disk, reformatting
the disk with the new file partition sizes, and restoring the original contents.Some
systems offer the alternative of swapping to a regular file. This is a considerably
easier solution, although it may not be as efficient. Consult your system
documentation for details and instructions on how to perform these operations.
Building IDL Applications Virtual Memory



366 Chapter 14: Writing Efficient IDL Programs
Note
For OpenVMS, as it comes from DEC, is not tuned for image processing. To get the
best performance from IDL, you should increase the VMS SYSGEN parameters,
file sizes, and AUTHORIZE quotas that restrict the virtual memory system. This
discussion is on the most elementary level, and the appropriate VMS manuals
should be consulted for more detail.

SYSGEN Parameters

WSMAX: This parameter sets the maximum number of pages of any working set on
a system-wide basis. The working set is that portion of virtual memory used by a
process that is actually in physical memory. Although this is an over simplification,
small working set sizes cause page faulting. Page faults waste time and potentially
require disk accesses. Increasing the working set to a size of three times the size of
the largest array to be processed, or at least 2,000 blocks, can cause dramatic speed
improvements.

VIRTUALPAGECNT: This parameter sets the maximum number of virtual pages
(512 bytes/page) that can be used by any one process.

To change the values of SYSGEN parameters, DEC recommends that you run the
AUTOGEN command procedure after adding lines to set the new values of changed
parameters to the end of the file SYS$SYSTEM: MODPARAMS.DAT.

System Files

The sizes of the system page and swap files (SYS$SYSTEM: PAGEFILE.SYS and
SWAPFILE.SYS) must be large enough to contain the virtual memory used by all
active processes. In any event, you cannot have more virtual memory than will fit in
the page file. You can increase the size of these files or create secondary system files
on a disk other than the system disk. If you get the error message

Page file fragmented - continuing

on the system console, your page file is too small. To increase the size of these files,
use the command procedure SYS$UPDATE: SWAPFILES. Use the SYSGEN
INSTALL command to activate system files created on disks other than the system
disk. AUTOGEN can also be used to change the sizes of these files.

Quotas

The following quotas, all of which can be changed on a per user or system basis using
the AUTHORIZE utility, affect virtual page limits and working set sizes.
Virtual Memory Building IDL Applications



Chapter 14: Writing Efficient IDL Programs 367
Pgflquo: The page file quota for each user expressed in blocks. If you increase the
size of the page file, be sure to increase the page file quotas for the users requiring
more virtual memory. Be sure that the page file size is at least as large as the sum of
the quotas of each active user.

WSquo: The working set quota for each user. This quota can be used to allow some
users a larger working set than others. WSquo must not be larger than WSMAX.

Note
For Windows and Macintosh, consult your system documentation for details on
how to configure your system to use virtual memory.
Building IDL Applications Virtual Memory



368 Chapter 14: Writing Efficient IDL Programs
IDL Implementation

IDL programs are compiled into a low-level abstract machine code which is
interpretively executed. The dynamic nature of variables in IDL and the relative
complexity of the operators precludes the use of directly executable code. Statements
are only compiled once, regardless of the frequency of their execution.

The IDL interpreter emulates a simple stack machine with approximately 50
operation codes. When performing an operation, the interpreter must determine the
type and structure of each operand and branch to the appropriate routine. The time
required to properly dispatch each operation may be longer than the time required for
the operation itself.

The characteristics of the time required for array operations is similar to that of vector
computers and array processors. There is an initial set-up time, followed by rapid
evaluation of the operation for each element. The time required per element is shorter
in longer arrays because the cost of this initial set-up period is spread over more
elements. The speed of IDL is comparable to that of optimized FORTRAN for array
operations. When data are treated as scalars, IDL efficiency degrades by a factor of
30 or more.
IDL Implementation Building IDL Applications



Chapter 14: Writing Efficient IDL Programs 369
The IDL Code Profiler

The IDL Code Profiler helps you analyze the performance of your applications. You
can easily monitor the calling frequency and execution time for procedures and
functions. The Profiler can be used with programs entered from the command line as
well as programs run from within a file.

You can start the IDL Code Profiler by selecting “Profile” from the Run menu of the
IDLDE or by entering PROFILER at the Command Input Line. For more information
about the PROFILER procedure, see PROFILER in the IDL Reference Guide.

Note
Calling the Profiler from the Command Input Line does not start the Profiler dialog.

The Profile Dialog

Select “Profile” from the Run menu. The Profile dialog appears.

User Modules

User modules include user-written procedures as well as library procedures and
functions provided with IDL. By default, none of the User Modules are selected for
profiling. To select a module, click on the checkbox next to it. All user modules must
be compiled before opening the Profile dialog in order to be available for profiling.

Figure 14-1: Profile Dialog
Building IDL Applications The IDL Code Profiler



370 Chapter 14: Writing Efficient IDL Programs
All User Modules

Select this checkbox to select all the user modules for profiling.

System Modules

This field includes all IDL system procedures and functions.

All System Modules

Select this checkbox to select all the system modules for profiling.

Buttons

Click “Profile All” to enable profiling for all the available modules—System and
User. Click “Clear All” to disable profiling for all the available modules—System
and User. Click “Reset” to clear the report shown in the “Profile Report” dialog. The
“Profile Report” dialog is dismissed, as it no longer contains any information. Click
“Report” to generate a profile of the selected modules. The Profile Report dialog
appears. Click “Cancel” to dismiss the Profile dialog. Click “Help” to display Help
on this dialog.

The Profile Report Dialog

Click “Report” from the Profile dialog in the Run menu of the IDLDE. The Profile
Report dialog appears.

Fields in the Profiler Report Dialog

The fields in the Profiler Report dialog show the following attributes of the modules
selected for profiling from the Profile dialog. You can sort the values in each column
in both ascending and descending order by clicking anywhere within the column. By
default, the Modules column is sorted alphabetically.

Note
Whether you enter a program at the command line, or run a program contained in a
file, the PROFILER procedure will report the status of all the specified modules
compiled and executed either since profiling was first set or since the PROFILER
was reset.

Modules

The name of the library, user, or system procedure or function.
The IDL Code Profiler Building IDL Applications



Chapter 14: Writing Efficient IDL Programs 371
Typ

The type of module. System procedures or functions are associated with an “S”. User
or library functions or procedures are associated with a “U”.

Count

The number of times the procedure or function has been called.

Only(sec)

The time required, in seconds, for IDL to execute the given function or procedure, not
including any calls to other functions or procedures (children).

Only Avg

Average of the Only(sec) field above.

+Children(sec)

The time required, in seconds, for IDL to execute the given function or procedure
including any calls to other functions or procedures.

+Child Avg

Average of the +Children(sec) field above.

Buttons

Click “Print” to print the report. The Print dialog appears. You can also select “Print”
from the File menu of the IDLDE. Click “Save” to save the report as a text file. The
Save Profile Report dialog appears. Click “Cancel” to dismiss the Profile Report
dialog. The contents remain available after cancelling. Click “Help” to display Help
on this dialog.

Using the IDL Code Profiler

Open a new editor file by selecting “New” from the File menu.

Enter the following lines in the editor:

pro prof_test
openr, 1, filepath(’nyny.dat’, subdir=[’examples’, ’data’])
a=assoc(1, bytarr(768,512))
b=a[0]
close, 1
TV, b
end
Building IDL Applications The IDL Code Profiler



372 Chapter 14: Writing Efficient IDL Programs
Save the file as prof_test.pro by selecting “Save” from the File menu. The Save As
dialog appears.

To use the IDL Code Profiler, you must first compile the routines you would like to
profile. For more involved programs, you can use RESOLVE_ALL to compile all
uncompiled functions or procedures that are called in any already-compiled
procedure or function.

Select “Profile...” from the Run menu. The Profile dialog appears; it will remain
visible until dismissed. Select “Profile All” to profile all the available modules.

Run the application by selecting “Run” from the File menu. After the application is
finished, return to the Profile dialog and click “Report”. The Profile Report dialog
appears, as shown in the following figure.

For more information about the capabilities of either dialog, see “The Profile Dialog”
on page 369 and “The Profile Report Dialog” on page 370.

Profiling with Command Line Modules

We will demonstrate how the Profiler handles newly compiled modules. The above
example set profiling for all system files, plus the user module, prof_test, and the
library function, FILEPATH. If you have altered the above results, reset the report
and run prof_test again.

Figure 14-2: Profile Report Dialog
The IDL Code Profiler Building IDL Applications



Chapter 14: Writing Efficient IDL Programs 373
Enter the following lines at the Command Input Line:

;Create a dataset using the library function DIST. Note that DIST
;is immediately compiled.
A= DIST(500)

;Display the image.
TV, A

Return to the Profile dialog. You will note that the DIST function has been appended
to the User Module field, but that it remains deselected. The Profiler will not include
any uncompiled modules by default. Click “Report” in the Profile dialog to refresh
the Profile Report dialog’s results. The following figure shows the new results. Note
that TV is counted twice, and that more system modules have been appended to the
Modules column. The DIST function, although it is not itself included, calls system
routines which were previously selected for profiling.

If you select DIST in the User Modules field in the Profile dialog and then re-enter
only the statement calling TV at the Command Input Line, you will notice that only
the count for TV increases in the profiler report. You must re-enter the statement
calling DIST at the Command Input Line; the already-compiled library function is
executed again, making it available for profiling.

Figure 14-3: Refreshing the Profile Report
Building IDL Applications The IDL Code Profiler



374 Chapter 14: Writing Efficient IDL Programs
The IDL Code Profiler Building IDL Applications



Chapter 15:

Solutions to
Common IDL Tasks

There are various programming tasks that are often used in IDL programs. This chapter describes
how to do some of the things you will commonly need to do in an IDL program. The tasks
discussed in this chapter include:
Determining Variable Scope . . . . . . . . . . .  376
Determining if a Keyword is Set . . . . . . . .  377
Determining the Number of Array Elements in
an Expression or Variable . . . . . . . . . . . . .  378
Determining if a Variable is Defined  . . . .  379
Supplying Values for Missing Keywords  .  380

Supplying Values for Missing Arguments . 381
Determining the Size/Type of an Array . . . 382
Determining if a Variable Contains a Scalar or
Array Value  . . . . . . . . . . . . . . . . . . . . . . . . 385
Calling Functions/Procedures Indirectly . . 386
Executing Dynamically-Created IDL Code 387
Building IDL Applications 375



376 Chapter 15: Solutions to Common IDL Tasks
Determining Variable Scope

The ARG_PRESENT function returns TRUE if its parameter will be passed back to
the caller. This function is useful in user-written procedures to determine if a created
value remains within the scope of the calling routine. ARG_PRESENT helps the
caller avoid expensive computations and prevents heap leaks. For example, assume
that a procedure exists which depends upon an argument passed by the caller:

PRO pass_it, i

If the caller does not specify i, the program may not function properly. You can check
to make sure that an argument was specified by using the following statement:

IF ARG_PRESENT(i) THEN BEGIN
Determining Variable Scope Building IDL Applications



Chapter 15: Solutions to Common IDL Tasks 377
Determining if a Keyword is Set

The KEYWORD_SET function returns a 1 (true), if its parameter is defined and
nonzero; otherwise, it returns zero (false). For example, assume that a procedure is
written which performs and returns the result of a computation. If the keyword PLOT
is present and nonzero, the procedure also plots its result as follows:

;Procedure definition.
PRO XYZ, result, PLOT = plot

;Compute result.
...

;Plot result if keyword parameter is set.
IF KEYWORD_SET(PLOT) THEN PLOT, result

END

A call to this procedure that produces a plot is shown in the following statement.

XYZ, R, /PLOT
Building IDL Applications Determining if a Keyword is Set



378 Chapter 15: Solutions to Common IDL Tasks
Determining the Number of Array Elements in
an Expression or Variable

The N_ELEMENTS function returns the number of elements contained in any
expression or variable. Scalars always have one element. The number of elements in
arrays or vectors is equal to the product of the dimensions. The N_ELEMENTS
function returns zero if its parameter is an undefined variable. The result is always a
longword scalar.

For example, the following expression is equal to the mean of a numeric vector or
array.

TOTAL(arr) / N_ELEMENTS(arr)
Determining the Number of Array Elements in an Expression or Variable Building IDL Applications



Chapter 15: Solutions to Common IDL Tasks 379
Determining if a Variable is Defined

The N_ELEMENTS function provides a convenient method of determining if a
variable is defined. The following statement sets the variable abc to zero if it is
undefined; otherwise, the variable is not changed.

IF N_ELEMENTS(abc) EQ 0 THEN abc = 0
Building IDL Applications Determining if a Variable is Defined



380 Chapter 15: Solutions to Common IDL Tasks
Supplying Values for Missing Keywords

N_ELEMENTS is frequently used to check for omitted plain and keyword
arguments. N_PARAMS cannot be used to check for the number of keyword
arguments because it returns only the number of plain arguments. An example of
using N_ELEMENTS to check for a keyword parameter is as follows:

;Display an image with a given zoom factor. If factor is omitted,
;use 4.
PRO ZOOM, image, FACTOR = factor

;Supply default for missing keyword parameter.
IF N_ELEMENTS(factor) EQ 0 THEN factor = 4

Note
If you use this method, the variable factor is defined has having the value 4, even
though no value was supplied by the user. If the ZOOM procedure were called
within another routine, the variable factor would be defined for that routine and
for any other routines also called by the routine that called ZOOM. This can lead to
unexpected behavior if you pass arguments from one routine to another.

You can avoid this problem by using different variable names inside the routine
than are used in calling the routine. For example, if you wanted to supply a default
zoom factor in the example above, but did not want to change the value of factor,
you could use an approach similar to the following:

IF N_ELEMENTS(factor) EQ 0 THEN zoomfactor = 4 $
ELSE zoomfactor = factor

You would then set the zoom factor internally using the zoomfactor variable,
leaving factor itself unchanged.
Supplying Values for Missing Keywords Building IDL Applications



Chapter 15: Solutions to Common IDL Tasks 381
Supplying Values for Missing Arguments

The N_PARAMS function returns the number of positional arguments (not keyword
arguments) present in a procedure or function call. A frequent use is to call
N_PARAMS to determine if all arguments are present and if not, to supply default
values for missing parameters. For example:

;Print values of XX and YY. If XX is omitted, print values of YY
;versus element number.
PRO XPRINT, XX, YY

;Check number of arguments.
CASE N_PARAMS() OF

;Single-argument case.
1: BEGIN

;First argument is y values.
Y = XX

;Create vector of subscript indices.
X = INDGEN(N_ELEMENTS(Y))

END

;Two-argument case.
2: BEGIN

;Copy parameters to local arguments.
Y = YY & X = XX

END

;Print error message.
ELSE: MESSAGE, 'Wrong number of arguments'

ENDCASE

;Remainder of procedure.
...

END
Building IDL Applications Supplying Values for Missing Arguments



382 Chapter 15: Solutions to Common IDL Tasks
Determining the Size/Type of an Array

The SIZE function returns a vector that contains information indicating the size and
type of the parameter. The returned vector is always of longword type.

• The first element is equal to the number of dimensions of the parameter and is
zero if the parameter is a scalar.

• The next elements contain the size of each dimension.

• After the dimension sizes, the last two elements indicate the data type and the
total number of elements, respectively. The data type is encoded as follows:

Type Code Data Type

0 Undefined

1 Byte

2 Integer (16-bit)

3 Longword integer (32-bit)

4 Floating point

5 Double-precision floating

6 Complex floating

7 String

8 Structure

9 Double-precision complex floating

10 Pointer

11 Object reference

12 Unsigned integer (16-bit)

13 Unsigned longword integer (32-bit)

14 64-bit integer

15 Unsigned 64-bit integer

Table 15-1: Type Codes Returned by the SIZE Function
Determining the Size/Type of an Array Building IDL Applications



Chapter 15: Solutions to Common IDL Tasks 383
The data type can also be returned by setting the TYPE keyword to SIZE. In this
case, the return value of the SIZE function is the data type code of the given
expression.

Examples

Example 1

Assume A is an integer array with dimensions of (3,4,5). The statements:

arr = INDGEN(3,4,5)
S = SIZE(arr)

assign to the variable S a six-element vector containing:

The following code segment checks to see if the variable arr is two-dimensional and
extracts the dimensions:

;Create a variable.
arr = [[1,2,3],[4,5,6]]

;Get size vector.
S = SIZE(arr)

;Check if two dimensional.
IF S[0] NE 2 THEN $

;Print error message.
MESSAGE, 'Variable a is not two dimensional.'

;Get number of columns and rows.
NX = S[1] & NY = S[2]

PRINT, 'Array is ', NX, ' columns by ', NY, ' rows.'

Element Value Description

S0 3 Three dimensions

S1 3 First dimension

S2 4 Second dimension

S3 5 Third dimension

S4 2 Integer type

S5 60 Number of elements = 3*4*5

Table 15-2: SIZE Values
Building IDL Applications Determining the Size/Type of an Array



384 Chapter 15: Solutions to Common IDL Tasks
IDL prints:

Array is 3 columns by 2 rows.

Example 2

The following example illustrates two ways in which to determine the type code of
the input expression.

The first method requires you to access the correct element of the array returned by
the SIZE function (the second to last element). For example:

array = [[1,2,3], [4,5,6], [7,8,9]]

sz = SIZE(array)
type = sz[3]

;A more flexible method:
sz = SIZE(array)
n = N_ELEMENTS(sz)
type = sz[n-2]

The second method involves using the TYPE keyword to SIZE. In this case, the value
returned by the SIZE function contains only the type code of the input expression:

type = SIZE(array, /TYPE)
Determining the Size/Type of an Array Building IDL Applications



Chapter 15: Solutions to Common IDL Tasks 385
Determining if a Variable Contains a Scalar or
Array Value

The SIZE function can also be used to determine whether a variable holds a scalar
value or an array. Setting the DIMENSIONS keyword causes the SIZE function to
return a 0 if the variable is a scalar, or the dimensions if the variable is an array, as
shown in the following example:

A = 1
B = [1]
C = [1,2,3]
D = [[1,2],[3,4]]

PRINT, SIZE(A, /DIMENSIONS)
PRINT, SIZE(B, /DIMENSIONS)
PRINT, SIZE(C, /DIMENSIONS)
PRINT, SIZE(D, /DIMENSIONS)

IDL Prints:

0
1
3
2 2
Building IDL Applications Determining if a Variable Contains a Scalar or Array Value



386 Chapter 15: Solutions to Common IDL Tasks
Calling Functions/Procedures Indirectly

The CALL_FUNCTION and CALL_PROCEDURE routines are used to indirectly
call functions and procedures whose names are contained in strings. Although not as
flexible as the EXECUTE function (see the following page), CALL_FUNCTION and
CALL_PROCEDURE are much faster, and should be used in preference to
EXECUTE whenever possible.

Example

This example code fragment, taken from the routine SVDFIT, calls a function whose
name is passed to SVDFIT via a keyword parameter as a string. If the keyword
parameter is omitted, the function POLY is called.

;Function declaration.
FUNCTION SVDFIT,..., FUNCT = funct

...

;Use default name, POLY, for function if not specified.
IF N_ELEMENTS(FUNCT) EQ 0 THEN FUNCT = 'POLY'

;Make a string of the form "a = funct(x,m)", and execute it.
Z = EXECUTE('A = '+FUNCT+'(X,M)')

...

The above example is easily made more efficient by replacing the call to EXECUTE
with the following line:

A = CALL_FUNCTION(FUNCT, X, M)
Calling Functions/Procedures Indirectly Building IDL Applications



Chapter 15: Solutions to Common IDL Tasks 387
Executing Dynamically-Created IDL Code

The EXECUTE function compiles and executes one or more IDL statements
contained in its string parameter during runtime. EXECUTE is limited by two
factors:

• Calls to EXECUTE cannot be nested, so a routine called by EXECUTE cannot
use EXECUTE itself.

• The need to compile the string at runtime makes EXECUTE inefficient in
terms of speed.

The CALL_FUNCTION and CALL_PROCEDURE routines provide much of the
functionality of EXECUTE without imposing these limitations and should be used in
preference to EXECUTE when possible.

The result of the EXECUTE function is true (1) if the string was successfully
compiled and executed. If an error occurred during either phase, the result is false (0).
If an error occurs, an error message is printed.

Multiple statements in the string should be separated with the “&” character. GOTO
statements and labels are not allowed.
Building IDL Applications Executing Dynamically-Created IDL Code



388 Chapter 15: Solutions to Common IDL Tasks
Executing Dynamically-Created IDL Code Building IDL Applications



Chapter 16:

Building Cross-
Platform Applications

The following topics are covered in this chapter:
Overview . . . . . . . . . . . . . . . . . . . . . . . . . .  390
Which Operating System is Running?  . . .  391
File and Path Specifications  . . . . . . . . . . .  392
Environment Variables  . . . . . . . . . . . . . . .  395
Files and I/O  . . . . . . . . . . . . . . . . . . . . . . .  396
Math Exceptions . . . . . . . . . . . . . . . . . . . .  399
Operating System Access . . . . . . . . . . . . .  400

Display Characteristics and Palettes  . . . . . 401
Fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
Printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
SAVE and RESTORE  . . . . . . . . . . . . . . . . 404
Widgets  . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
Using External Code  . . . . . . . . . . . . . . . . . 408
IDL DataMiner Issues  . . . . . . . . . . . . . . . . 409
Building IDL Applications 389



390 Chapter 16: Building Cross-Platform Applications
Overview

IDL is designed as a platform-independent environment for data analysis and
programming. Because of this, the vast majority of IDL’s routines operate the same
way no matter what type of computer system you are using. IDL’s cross-platform
development environment makes it easy to develop an application on one type of
system for use on any system IDL supports.

Despite IDL’s cross-platform nature, there are differences between the computers that
make up a multi-platform environment. Operating systems supply resources in
different ways. While IDL attempts to abstract these differences and provide a
common environment for all Windows, Macintosh, UNIX, and VMS machines, there
are some cases where the discrepancies cannot be overcome. This chapter discusses
aspects of IDL that you may wish to consider when developing an application that
will run on multiple types of computer.

Note
This chapter is not an exhaustive list of differences between versions of IDL for
different platforms. Rather, it covers issues you may encounter when writing cross-
platform applications in IDL.
Overview Building IDL Applications



Chapter 16: Building Cross-Platform Applications 391
Which Operating System is Running?

In some cases, in order to effectively take platform differences into account, your
application will need to execute different code segments on different systems.
Operating system and IDL version information is contained in the IDL system
variable !VERSION. For example, you could use an IDL CASE statement that looks
something like the following to execute code that pertains to a particular operating
system family:

CASE !VERSION.OS_FAMILY OF
'MacOS' : Code for Macintosh
'unix' : Code for Unix
'vms' : Code for VMS
'Windows' : Code for Windows

ENDCASE

Writing conditional IDL code based on platform information should be a last resort,
used only if you cannot accomplish the same task in a platform-independent manner.
Building IDL Applications Which Operating System is Running?



392 Chapter 16: Building Cross-Platform Applications
File and Path Specifications

Different operating systems use different path specification syntax and directory
separation characters. The following table summarizes the different characters used
by different operating systems; see !PATH in the IDL Reference Guide for further
details on path specification.

As a result of these differences, specifying filenames and paths explicitly in your IDL
application can cause problems when moving your application to a different
platform. You can effectively isolate your IDL programs from platform-specific file
and path specification issues by using the FILEPATH and DIALOG_PICKFILE
functions.

Choosing Files at Runtime

To allow users of your application to choose a file at runtime, use the
DIALOG_PICKFILE function. DIALOG_PICKFILE will always return the file path
with the correct syntax for the current platform. Other methods (such as reading a file
name from a text field in a widget program) may or may not provide a proper file
path.

Selecting Files Programmatically

To give your application access to a file you know to be installed on the host, use the
FILEPATH function. By default, FILEPATH allows you to select files that are included
in the IDL distribution tree. Chances are, however, that a file you supply as part of your

Operating
System

Directory
Separator

Path Element
Separator

MacOs : (colon) , (comma)

UNIX / (forward slash) : (colon)

VMS . (dot) , (comma)

Windows \ (backward slash) ; (semicolon)

Table 16-1: Directory and Path Element Separator Characters
File and Path Specifications Building IDL Applications



Chapter 16: Building Cross-Platform Applications 393
own application is not included in the IDL tree. You can still use FILEPATH by
explicitly specifying the root of the directory tree to be searched.

For example, suppose your application is installed in a subdirectory named MYAPP of
the root directory of the filesystem that contains the IDL distribution. You could use
the FILEPATH function and set the ROOT_DIR keyword to the root directory of the
filesystem, and use the SUBDIRECTORY keyword to select the MYAPP directory.
If you are looking for a file named myapp.dat, the FILEPATH command looks like
this:

file = FILEPATH('myapp.dat', ROOT_DIR=root, SUBDIR='MYAPP')

The problem that remains is how to specify the value of root properly on each
platform. This is one case where it is very difficult to avoid writing some platform-
specific code. We could write an IDL CASE statement each time the FILEPATH
function is used. Instead, the following code segment sets an IDL variable to the
string value of the root of the filesystem, and passes that variable to the ROOT_DIR
keyword. The CASE statement looks like this:

CASE !VERSION.OS_FAMILY OF
'MacOS' : rootdir = STRMID(!DIR, 0, STRPOS(!DIR, ':'))
'unix' : rootdir = '/'
'vms' : rootdir = 'SYS$SYSDEVICE:'
'Windows' : rootdir = STRMID(!DIR, 0, 2)

ENDCASE
file = FILEPATH('myapp.dat', ROOT=rootdir, SUBDIR='MYAPP')

Note that the root directories under Unix and VMS are well defined, whereas the root
directories on machines running the Macintosh OS or Microsoft Windows must be

Figure 16-1: A possible directory hierarchy for an IDL application.
Building IDL Applications File and Path Specifications



394 Chapter 16: Building Cross-Platform Applications
determined by parsing the IDL system variable !DIR. On the Macintosh, the rootdir
variable takes the value of !DIR up to the first directory separator character (a colon,
in this case). On machines running Microsoft Windows, the root is assumed to be the
drive letter of the hard drive and the following colon — usually “C:”.
File and Path Specifications Building IDL Applications



Chapter 16: Building Cross-Platform Applications 395
Environment Variables

UNIX and VMS versions of IDL have the ability to use environment variables (or
logical names, under VMS) to store information about the environment in which IDL
is running. Typically, environment variables are used to store information like the
path to the main IDL directory, or to a batch file to be read and executed when IDL
starts up. See “Environment Variables Used by IDL” in Chapter 2 of the Using IDL
manual for details.

Microsoft Windows systems also have the ability to use environment variables to
store information, but this form of information storage is much less common under
Windows. On the Macintosh, there is no analogue of the environment variable.

Rather than using environment variables, the IDL Development Environment stores
information in preferences; the mechanisms used to store preferences is different
between platforms, but is generally transparent to you. Configuration settings you
specify in the preferences dialogs of the IDL Development Environment are saved
and are available to the IDE the next time it is started.

What does this all mean in the context of writing IDL applications for multiple
platforms? Simply this: don’t rely on environment variables in your programs unless
you know that:

1. the target platform supports environment variables, and

2. the appropriate environment variables are defined as you wish them to be on
the target platform.
Building IDL Applications Environment Variables



396 Chapter 16: Building Cross-Platform Applications
Files and I/O

IDL’s file input and file output routines are designed to work identically on all
platforms, where possible. In the case of basic operations, such as opening a text file
and reading its contents, importing an image format file into an IDL array, or writing
ASCII data to a file on a hard disk, IDL’s I/O routines work the same way on all
platforms. In more complicated cases, however, such as reading data stored in binary
data format files, different operating systems may use files that are structured
differently, and extra care may be necessary to ensure that IDL reads or writes files in
the proper way.

Before attempting to write a cross-platform IDL application that uses more than basic
file I/O, you should read and understand the sections in Chapter 8, “Files and
Input/Output” that apply to the platforms your application will support. The
following are a few topics to think about when writing IDL applications that do
input/output.

Byte Order Issues

Computer systems on which IDL runs support two ways of ordering the bytes that
make up an arbitrary scalar: big endian, in which multiple byte numbers are stored in
memory beginning with the most significant byte, and little endian, in which
numbers are stored beginning with the least significant byte. The following table lists
the processor types and operating systems IDL supports and their byte ordering
schemes:

Processor Type Operating System Byte Ordering

Digital Alpha AXP Tru64 UNIX little-endian

Alpha VMS little-endian

Windows NT little-endian

Hewlett Packard PA-RISC HP-UX big-endian

IBM RS/6000 AIX big-endian

Intel x86 Linux little-endian

Solaris x86 little-endian

Windows little-endian

Table 16-2: Byte ordering schemes used by platforms that support IDL
Files and I/O Building IDL Applications



Chapter 16: Building Cross-Platform Applications 397
The IDL routines BYTEORDER and SWAP_ENDIAN allow you to convert
numbers from big endian format to little endian format and vice versa. It is often
easier, however, to use the XDR (for eXternal Data Representation) format to store
data that you know will be used by multiple platforms. XDR files write binary data in
a standard “canonical” representation; as a result, the files are slightly larger than
pure binary data files. XDR files can be read and written on any platform that
supports IDL. XDR is discussed in detail in “Portable Unformatted Input/Output” on
page 204.

Logical Unit Numbers

Logical Unit Numbers (LUNs) are assigned to individual files when the files are
opened by the IDL OPENR/OPENU/OPENW commands, and are used to specify
which file IDL should read from or write to. There are a total of 128 LUNs available
for assignment to files. While it is possible to assign any of the integers between 1-99
to a given file, when writing applications for others it is good programming practice
to let IDL assign and manage the LUNs itself. By using the GET_LUN keyword to
the OPEN routines, you can ask IDL to assign a free Logical Unit Number between
100-128 to the specified file. Letting IDL assign the LUN from the list of free unit
numbers ensures that your application does not attempt to use a LUN already in use
by someone else’s application. See the description of the GET_LUN keyword to
OPEN in the IDL Reference Guide and “Logical Unit Numbers (LUNs)” on
page 157.

Macintosh File Pointer

IDL provides the POINT_LUN procedure to allow you to explicitly position the file
pointer anywhere within an open file. Note, however, that on the Macintosh, the
POINT_LUN routine cannot be used to position the file pointer past the end of the
file, as it can on other platforms.

Motorola PowerPC Macintosh OS big-endian

SGI R4000 and up Irix big-endian

Sun SPARC SunOS big-endian

Solaris big-endian

Processor Type Operating System Byte Ordering

Table 16-2: Byte ordering schemes used by platforms that support IDL
Building IDL Applications Files and I/O



398 Chapter 16: Building Cross-Platform Applications
Macintosh File Types and Creators

The Macintosh file system attaches two pieces of information to each file that is not
used by other operating systems. The Macintosh file type specifies what type of data
is stored in the file—for example, a file may contain text, an image, or unspecified
binary information. The Macintosh file creator specifies which application created
the file.

Text files saved by IDL on the Macintosh have the default file type “TEXT”. Binary
files saved by IDL on the Macintosh have the default file type “BIN ” (note that the
fourth character is a space). All files created by IDL have the default creator type
“MIDL”. The default types can be overridden using the MACCREATOR and
MACTYPE keywords to the OPEN routines. See OPEN in the IDL Reference Guide
for details.

Naming of IDL .pro Files

When naming IDL .pro files used in cross-platform applications, be aware of the
various platforms’ file naming conventions and limitations. For example, the “$”
character is not allowed in a filename under VMS.

Be careful with case when naming files. For example, while Microsoft Windows
systems present file names using mixed case, file names are in fact case-insensitive.
File names are case-insensitive under VMS as well. Under Unix and the Macintosh
operating system, file names are case sensitive—file.pro is different from File.pro.
When writing cross-platform applications, you should avoid using filenames that are
different only in case. The safest course is to use filenames that are all lower case.

Remember, too, that IDL commands are themselves case-insensitive. If entered at the
IDL command prompt, the following are equivalent:

IDL> command
IDL> COMMAND
IDL> CommanD

One upshot of this is that if you have filenames that differ only in case and you use
IDL’s automatic compilation feature, on platforms where case matters, IDL will look
for the lower-case version of the file name first. You can specify case-sensitive
filenames if you use the .COMPILE and .RUN executive commands—but again, we
recommend that you use unique file names always.
Files and I/O Building IDL Applications



Chapter 16: Building Cross-Platform Applications 399
Math Exceptions

The detection of math errors, such as division by zero, overflow, and attempting to
take the logarithm of a negative number, is hardware and operating system
dependent. Some systems trap more errors than other systems. Beginning with
version 5.1, IDL uses the IEEE floating-point standard on all supported systems. As a
result, IDL always substitutes the special floating-point values NaN and Infinity
when it detects a math error. (See “Special Floating-Point Values” on page 428 for
details on NaN and Infinity.)
Building IDL Applications Math Exceptions



400 Chapter 16: Building Cross-Platform Applications
Operating System Access

While IDL provides ways to interact with each operating system under which it runs,
it is not generally useful to use operating-system native functions in a cross-platform
IDL program. If you find that you must use operating-system native features, be sure
to determine the current operating system (as described in “Which Operating System
is Running?” on page 391) and branch your code accordingly.
Operating System Access Building IDL Applications



Chapter 16: Building Cross-Platform Applications 401
Display Characteristics and Palettes

Finding Screen Size

Use the GET_SCREEN_SIZE function to determine the size of the screen on which
your application is displayed. Writing code that checks the screen size allows your
application to handle different screen sizes gracefully.

Number of Colors Available

Use the N_COLORS and TABLE_SIZE fields of the !D system variable to determine
the number of colors supported by the display and the number of color-table entries
available, respectively.

Make sure that your application handles relatively small numbers of colors (less than
256, say) gracefully. For example, Microsoft Windows reserves the first 20 colors out
of all the available colors for its own use. These colors are the ones used for title bars,
window frames, window backgrounds, scroll bars, etc. If your application is running
on a Windows machine with a 256-color display, it will have at most 236 colors
available to work with.

Similarly, make sure that your application handles TrueColor (24-bit or 32-bit color)
displays as well. If your application uses IDL’s color tables, for example, you will
need to force the application into 8-bit mode using the command

DEVICE, DECOMPOSED=0

to use indexed-color mode on a machine with a TrueColor display.
Building IDL Applications Display Characteristics and Palettes



402 Chapter 16: Building Cross-Platform Applications
Fonts

IDL uses three font systems for writing characters on the graphics device, whether
that device be a display monitor or a printer: Hershey (vector) fonts, TrueType
(outline) fonts, and device (hardware) fonts. Fonts are discussed in detail in
Appendix H, “Fonts” in the IDL Reference Guide.

Both TrueType and Vector fonts are displayed identically on all of the platforms that
support IDL. This means that if your cross-platform application uses either the
TrueType fonts supplied with IDL or the Vector fonts, there is no need for platform-
dependent code.
Fonts Building IDL Applications



Chapter 16: Building Cross-Platform Applications 403
Printing

IDL displays operating-system native dialogs using the DIALOG_PRINTJOB and
DIALOG_PRINTERSETUP functions. Since the dialogs that control printing and
printer setup differ between systems, so do the options and capabilities presented via
IDL’s print dialogs. If your IDL application uses IDL’s printing dialogs, make sure
that your interface calls the dialog your user will expect for the platform in question.
Building IDL Applications Printing



404 Chapter 16: Building Cross-Platform Applications
SAVE and RESTORE

Unless your cross-platform application supports VMS, there are no platform-specific
issues to be concerned with. However, if you distribute your application via IDL
SAVE files, remember that files containing IDL routines are not necessarily
compatible between IDL releases. Always save your original code and re-save when
a new version of IDL is released. SAVE files containing data are always compatible
between releases of IDL.

If your application supports VMS, you should be aware that SAVE files created on
VMS machines with IDL versions before release 5.1 stored floating-point numbers in
VAX format. Beginning with version 5.1, IDL stores all floating-point numbers in
IEEE format. When IDL reads an older data file created on a VAX, it automatically
converts the floating-point numbers from VAX format to IEEE format.

Note also that if you are restoring a file created with VAX IDL version 1, you must
restore on a machine running VMS.
SAVE and RESTORE Building IDL Applications



Chapter 16: Building Cross-Platform Applications 405
Widgets

IDL’s user interface toolkit is designed to provide a “native” look and feel to widget-
based IDL applications. Where possible, widget toolkit elements are built around the
operating system’s native dialogs and controls; as a result, there are instances where
the toolkit behaves differently from operating system to operating system. This
section describes a number of platform-dependencies in the IDL widget toolkit.
Consult the descriptions of the individual DIALOG and WIDGET routines in the IDL
Reference Guide for complete details.

Dialog Routines

IDL’s DIALOG_ routines (DIALOG_PICKFILE, etc.) rely on operating system
native dialogs for most of their functionality. This means, for example, that when you
use DIALOG_PICKFILE in an IDL application, a Windows user will see the
Windows-native file selection dialog, a Macintosh user will see the appropriate
Macintosh-native file selection dialog (there are two), and Motif users will see the
Motif file selection dialog. Consult the descriptions of the individual DIALOG
routines in the IDL Reference Guide for notes on the platform dependencies.

Base Widgets

Base widgets (created with the WIDGET_BASE routine) play an especially
important role in creating widget-based IDL applications because their behavior
controls the way the application and its components are iconized, layered, and
destroyed. See Iconizing, Layering, and Destroying Groups of Top-Level Bases
under WIDGET_BASE in the IDL Reference Guide for details about the platform-
dependent behavior.

Positioning Widgets within a Base Widget

The widget geometry management keywords to the WIDGET_BASE routine allow a
great deal of flexibility in positioning child widgets within a base widget. When
building cross-platform applications, however, making use of IDL’s explicit
positioning features can be counterproductive.

Because IDL attempts to provide a platform-native look on each platform, widgets
depend on the platform’s current settings for font, font size, and “window dressing”
(things like the thickness of borders and three-dimensional appearance of controls).
As a result of the platform-specific appearance of each widget, attempting to position
individual widgets manually within a base will seldom give satisfactory results on all
platforms. Instead, insert widgets inside base widgets that have the ROW or
Building IDL Applications Widgets



406 Chapter 16: Building Cross-Platform Applications
COLUMN keywords set, and let IDL determine the correct geometry for the current
platform automatically. You can gain a finer degree of control over the layout by
placing groups of widgets within sub-base widgets (that is, base widgets that are the
children of other base widgets). This allows you to control the column or row layout
of small groups of widgets within the larger base widget.

In particular, refrain from using the X/YSIZE and X/YOFFSET keywords in cross-
platform applications. Using the COLUMN and ROW keywords instead will cause
IDL to calculate the proper (platform-specific) size for the base widget based on the
size and layout of the child widgets.

Fonts used in Widget Applications

You can specify the font used in a widget via the FONT keyword. In general, the
default fonts used by IDL widgets will most closely approximate the look of a
platform-native application. If you choose to specify the fonts used in your widget
application, however, note that the different platforms have different font-naming
schemes for device fonts. While device fonts will provide the best performance for
your application, specifying device fonts for your widgets requires that you write
platform-dependent code as described in “Which Operating System is Running?” on
page 391. You can avoid the need for platform-dependent code by using the
TrueType fonts supplied with IDL; there may be a performance penalty when the
fonts are initially rendered. See Appendix H, “Fonts” in the IDL Reference Guide for
details.

Application Menu Bars

The Macintosh is unique among the platforms on which IDL runs in that it provides a
single menu bar at the top of the screen for the currently-active application. The
APP_MBAR keyword to the WIDGET_BASE function allows your application to
“take over” the Macintosh system menu when your IDL application is active. If you
wish to place the menu for your application in an individual window, use the MBAR
keyword instead. Code that uses the APP_MBAR keyword acts as if the MBAR
keyword had been specified. See APP_MBAR under WIDGET_BASE in the IDL
Reference Guide for details.

Motif Resources

Use the RESOURCE_NAME keyword to apply standard X Window System
resources to a widget on a Motif system. Resources specified via the
RESOURCE_NAME keyword will be quietly ignored on Windows and Macintosh
systems. See RESOURCE_NAME under WIDGET_BASE in the IDL Reference
Widgets Building IDL Applications



Chapter 16: Building Cross-Platform Applications 407
Guide for details. In general, you should not expect to be able to duplicate the level of
control available via X Window System resources on other platforms.

WIDGET_STUB

On Motif platforms, you can use the WIDGET_STUB routine to include widgets
created outside IDL (that is, with the Motif widget toolkit) in your IDL applications.
The WIDGET_STUB mechanism is only available under Unix and VMS, and is thus
not suitable for use in cross-platform applications that will run under Microsoft
Windows or on the Macintosh. WIDGET_STUB is described in the External
Development Guide.

Widget Event Inconsistencies

Different windowing systems provide different types of events when graphical items
are displayed and manipulated. IDL attempts to provide consistent functionality on
all windowing systems, but is not always completely successful. For example,
enter/exit tracking events are not generated by some windowing systems. IDL
attempts to provide appropriate enter/exit events, but behaviors may differ on
different platforms.

Handle individual widget events carefully, and be sure to test your code on all
platforms supported by your application.
Building IDL Applications Widgets



408 Chapter 16: Building Cross-Platform Applications
Using External Code

The use of programs written in languages other than IDL—either by calling code
from an IDL program via CALL_EXTERNAL or LINKIMAGE or via the callable
IDL mechanism—is an inherently platform-dependent process. Writing a cross-
platform IDL program that uses CALL_EXTERNAL or LINKIMAGE requires that
you provide the appropriate programs or shared libraries for each platform your
application will support, and is beyond the scope of this chapter. Similarly, the
Callable IDL mechanism is necessarily different from platform to platform. See the
External Development Guide for details on writing and using external code along
with IDL.
Using External Code Building IDL Applications



Chapter 16: Building Cross-Platform Applications 409
IDL DataMiner Issues

The IDL DataMiner provides a platform-independent interface to IDL’s Open
Database Connectivity (ODBC) features. Note, however, that the ODBC drivers that
allow connection to different databases are platform-dependent, and may require
platform-dependent coding. In addition, the dialogs called by the
DIALOG_DBCONNECT function are provided by the specific ODBC driver in use,
and will be different from data source to data source.
Building IDL Applications IDL DataMiner Issues



410 Chapter 16: Building Cross-Platform Applications
IDL DataMiner Issues Building IDL Applications



Chapter 17:

Controlling Errors
The following topics are covered in this chapter:
Overview . . . . . . . . . . . . . . . . . . . . . . . . . .  412
Default Error-Handling Mechanism . . . . .  413
Disappearing Variables . . . . . . . . . . . . . . .  414
Controlling Errors Using CATCH  . . . . . .  415
Controlling Errors Using ON_ERROR . . .  419

Controlling Input/Output Errors  . . . . . . . . 420
Error Signaling . . . . . . . . . . . . . . . . . . . . . . 422
Obtaining Traceback Information  . . . . . . . 424
Error Handling . . . . . . . . . . . . . . . . . . . . . . 425
Math Errors  . . . . . . . . . . . . . . . . . . . . . . . . 427
Building IDL Applications 411



412 Chapter 17: Controlling Errors
Overview

This chapter discusses routines and methods used to check and handle errors that
occur in IDL programs. The routines covered here are rarely used interactively.

IDL divides possible execution errors into three categories: input/output, math, and
all others. There are three main error-handling routines: CATCH, ON_ERROR, and
ON_IOERROR. CATCH is a generalized mechanism for handling exceptions and
errors. The ON_ERROR routine handles regular errors when an error handler
established by the CATCH procedure is not present. The ON_IOERROR routine
allows you to change the default way in which input/output errors are handled. The
FINITE and CHECK_MATH routines provide control over math errors.
Overview Building IDL Applications



Chapter 17: Controlling Errors 413
Default Error-Handling Mechanism

In the default case, whenever an error is detected by IDL during the execution of a
program, program execution stops and an error message is printed. The execution
context is that of the program unit (procedure, function, or main program) in which
the error occurred.

Sometimes it is possible to recover from an error by manually entering statements to
correct the problem. Possibilities include setting the values of variables, closing files,
etc., and then entering the command .CONTINUE, which resumes execution of the
program unit at the beginning of the statement that caused the error.

As an example, if an error occurs because an undefined variable is referenced, you
can simply define the variable from the keyboard, then continue execution with
.CON. Of course, this is a temporary solution. You should still edit the program file to
fix the problem permanently.
Building IDL Applications Default Error-Handling Mechanism



414 Chapter 17: Controlling Errors
Disappearing Variables

IDL users may find that all their variables have seemingly disappeared after an error
occurs inside a procedure or function. The misunderstood subtlety is that after the
error occurs, IDL’s context is inside the called procedure, not in the main level. All
variables in procedures and functions, with the exception of parameters and common
variables, are local in scope. Typing RETURN or RETALL will make the lost
variables reappear.

RETALL is best suited for use when an error is detected in a procedure and it is
desired to return immediately to the main program level despite nested procedure
calls. RETALL issues RETURN commands until the main program level is reached.

The HELP command can be used to see the current call stack (i.e., which program
unit IDL is in and which program unit called it). For more information, see HELP in
the IDL Reference Guide.
Disappearing Variables Building IDL Applications



Chapter 17: Controlling Errors 415
Controlling Errors Using CATCH

The CATCH procedure provides a generalized mechanism for handling any type of
errors and exceptions within IDL. Calling CATCH establishes an error handler for
the current procedure that intercepts all errors that can be handled by IDL, with the
exception of non-fatal warnings such as math errors (e.g., floating-point underflow).
The CATCH mechanism is similar to C’s setjmp/longjmp facilities or C++’s
catch/throw facilities.

When an error occurs, each active procedure, beginning with the offending procedure
and proceeding up the call stack to the main program level, is examined for an error
handler (established by a call to CATCH). If an error handler is found, control
resumes at the statement after the call to CATCH. The index of the error is returned
in the argument to CATCH and is also stored in !ERROR_STATE.CODE. The
associated error message is stored in !ERROR_STATE.MSG. If no error handlers are
found, program execution stops, an error message is issued, and control reverts to the
interactive mode.

For more information, see CATCH and !ERROR_STATE in the IDL Reference
Guide.

Interaction of CATCH, ON_ERROR, and ON_IOERROR

Error handlers established by calls to CATCH supersede calls to ON_ERROR.
However, calls to ON_IOERROR made in the procedure that causes an I/O error
supersede any error handling mechanisms created with CATCH and the program
Building IDL Applications Controlling Errors Using CATCH



416 Chapter 17: Controlling Errors
branches to the label specified by ON_IOERROR. The following figure is a flow
chart of how errors are handled in IDL.

Figure 17-1: Error Handling in IDL.

Error or Exception is Generated

Is it an I/O error?

Is ON_IOERROR
routine in use?

Handle error as
indicated by
ON_IOERROR setting.

Is there an error handler
defined by the CATCH
routine?

Handle error with
CATCH-defined error
handler and continue
program execution.

Handle error as
indicated by setting of
ON_ERROR routine or
use default error handling.

Yes

No

No

Yes

No

Yes
Controlling Errors Using CATCH Building IDL Applications



Chapter 17: Controlling Errors 417
Canceling an Error Handler

Call CATCH with the CANCEL keyword set to cancel a procedure’s error handler.
This cancellation does not effect other error handlers that may be established in other
active procedures.

Generating an Exception

To generate an exception and cause control to return to the error handler, use the
MESSAGE procedure. Calling MESSAGE generates an exception that sets the
!ERROR_STATE system variable. !ERROR_STATE.MSG is set to the string used
as an argument to MESSAGE. See “Error Signaling” on page 422.

Example Using CATCH

The following procedure illustrates the use of CATCH:

PRO ABC

;Define variable A.
A = FLTARR(10)

;Establish error handler. When errors occur, the index of the error
;is returned in the variable Error_status. Initially, this
;argument is set to zero.
CATCH, Error_status

;This statement begins the error handler.
IF Error_status NE 0 THEN BEGIN

PRINT, 'Error index: ', Error_status
PRINT, 'Error message:', !ERR_STRING

;Handle the error by extending A.
A=FLTARR(12)

ENDIF

;Cause an error.
A[11]=12

;Even though an error occurs in the line above, program execution
;continues to this point because the event handler extended the
;definition of A so that the statement can be re-executed.
HELP, A

END
Building IDL Applications Controlling Errors Using CATCH



418 Chapter 17: Controlling Errors
Running the ABC procedure causes IDL to produce the following output and control
returns to the interactive prompt:

Error index:         -101
Error message:
Attempt to subscript A with <INT (      11)> is out of range.
A               FLOAT     = Array(12)
Controlling Errors Using CATCH Building IDL Applications



Chapter 17: Controlling Errors 419
Controlling Errors Using ON_ERROR

The ON_ERROR procedure determines the action taken when an error is detected
inside a user procedure or function and no error handlers established with the
CATCH procedure are found. The possible options for error recovery are shown in
the following table:

One useful option is to use ON_ERROR to cause control to be returned to the caller
of a procedure in the event of an error. The statement:

ON_ERROR, 2

placed at the beginning of a procedure will have this effect. Include this statement in
library procedures and other routines that will be used by others once the routines
have been debugged. This form of error recovery makes debugging a routine difficult
because the routine is exited as soon as an error occurs; therefore, it should be added
once the code is completely tested.

Note that error handlers established by CATCH supersede calls to ON_ERROR
made in the same procedure.

Value Action

0 Stop immediately in the context of the procedure or function that
caused the error. This is the default action.

1 Return to the main program level and stop.

2 Return to the caller of the program unit that called ON_ERROR
and stop.

3 Return to the program unit that called ON_ERROR and stop.

Table 17-1: Error Recovery Options
Building IDL Applications Controlling Errors Using ON_ERROR



420 Chapter 17: Controlling Errors
Controlling Input/Output Errors

The default action for handling input/output errors is to treat them exactly like regular
errors and follow the error handling strategy set by ON_ERROR. You can alter this
default by using the ON_IOERROR procedure to specify the label of a statement to
which execution should jump if an input/output error occurs. When IDL detects an
input/output error and an error-handling statement has been established, control
passes directly to the given statement without stopping program execution. In this
case, no error messages are printed.

Note that calls to ON_IOERROR made in the procedure that causes an I/O error
supersede any error handling mechanisms created with CATCH and the program
branches to the label specified by ON_IOERROR.

When writing procedures and functions that are to be used by others, it is good
practice to anticipate and handle errors caused by the user. For example, the
following procedure segment, which opens a file specified by the user, handles the
case of a nonexistent file or read error.

;Define a function to read, and return a 100-element, floating-
;point array.
FUNCTION READ_DATA, FILE_NAME

;Declare error label.
ON_IOERROR, BAD

;Use the GET_LUN keyword to allocate a logical file unit.
OPENR, UNIT, FILE NAME, /GET_LUN

;Define data array.
A = FLTARR(100)

;Read it.
READU, UNIT, A

;Clean up and return.
GOTO, DONE

;Exception label. Print the error message.
BAD:  PRINT, !ERR_STRING

;Close and free the input/output unit.
DONE: FREE_LUN, UNIT
Controlling Input/Output Errors Building IDL Applications



Chapter 17: Controlling Errors 421
;Return the result. This will be undefined if an error occurred.
RETURN, A

END

The important things to note in this example are that the FREE_LUN procedure is
always called, even in the event of an error, and that this procedure always returns to
its caller. It returns an undefined value if an error occurs, causing its caller to
encounter the error.
Building IDL Applications Controlling Input/Output Errors



422 Chapter 17: Controlling Errors
Error Signaling

The MESSAGE procedure is used by user procedures and functions to issue errors. It
has the form:

MESSAGE, Text

where Text is a scalar string that contains the text of the error message.

The MESSAGE procedure issues error and informational messages using the same
mechanism employed by built-in IDL routines. By default, the message is issued as
an error, the message is output, and IDL takes the action specified by the
ON_ERROR procedure.

As a side effect of issuing the error, appropriate fields of the system variable
!ERROR_STATE are set; the text of the error message is placed in
!ERROR_STATE.MSG, or in !ERROR_STATE.SYS_MSG for the operating
system’s component of the error message. See “Error Handling” on page 425 or
!ERROR_STATE in the IDL Reference Guide for more information.

As an example, assume the statement:

MESSAGE, 'Unexpected value encountered.'

is executed in a procedure named CALC. IDL would print:

% CALC: Unexpected value encountered.

and execution would halt.

The MESSAGE procedure accepts several keywords that modify its behavior. See
MESSAGE in the IDL Reference Guide for additional details.

Another use of MESSAGE involves re-signaling trapped errors. For example, the
following code uses ON_IOERROR to read from a file until an error (presumably
end-of-file) occurs. It then closes the file and reissues the error.

;Open the data file.
OPENR, UNIT, 'DATA.DAT', /GET_LUN

;Arrange for jump to label EOD when an input/output error occurs.
ON_IOERROR, EOD

;Read every line of the file.
WHILE 1 DO READF, UNIT, LINE

;An error has occurred. Cancel the input/output error trap.
EOD: ON_IOERROR, NULL
Error Signaling Building IDL Applications



Chapter 17: Controlling Errors 423
;Close the file.
FREE_LUN, UNIT

; Reissue the error. !ERROR_STATE.MSG contains the appropriate
; text. The IOERROR keyword causes it to be issued as an
; input/output error. Use of NONAME prevents MESSAGE from tacking
; the name of the current routine to the beginning of the message
; string since !ERROR_STATE.MSG already contains it.
MESSAGE, !ERROR_STATE.MSG, /NONAME, /IOERROR
Building IDL Applications Error Signaling



424 Chapter 17: Controlling Errors
Obtaining Traceback Information

It is sometimes useful for a procedure or function to obtain information about its
caller(s). The HELP procedure returns, in a string array, the contents of the procedure
stack when the CALLS keyword parameter is specified. The first element of the
resulting array contains the module name, source filename, and line number of the
current level. The second element contains the same information for the caller of the
current level, and so on, back to the level of the main program.

For example, the following code fragment prints the name of its caller, followed by
the source filename and line number of the call:

HELP, CALLS = A

;print 2nd element
PRINT, 'called from:', A[1]

This results in a message of the following form:

Called from: DIST </usr2/idl/lib/dist.pro (27)>

Programs can readily parse the traceback information to extract the source file name
and line number.
Obtaining Traceback Information Building IDL Applications



Chapter 17: Controlling Errors 425
Error Handling

IDL contains a system variable that is updated when errors occur. This system
variable is described below.

!ERROR_STATE

This system variable is a structure. Whenever an error occurs, IDL sets the fields in
this system variable according to the nature of the field. An IDL error is always
comprised of an IDL-generated component, and may also contain an operating
system-generated component.

The fields for the !ERROR_STATE system variable are described below:

• NAME — A read-only string variable containing the error name of the IDL-
generated component of the last error message. Although the error code—as
defined below in CODE—may change between IDL sessions, the name will
always remain the same. If an error has not occurred in the current IDL
session, this field is set to IDL_M_SUCCESS.

• BLOCK — A read-only string variable containing the name of the message
block for the IDL-generated component of the last error message. If an error
has not occurred in the current IDL session, this field is set to
IDL_MBLK_CORE.

• CODE — The error code of the IDL-generated component of the last error in
IDL. Whenever an error occurs, IDL sets this system variable to the error code
(a negative integer number) of the error. Although the error code may change
between IDL sessions, the name—as defined above in NAME—will always
remain the same. If an error has not occurred in the current IDL session, this
field is set to 0.

• SYS_CODE — The error code of the operating system-generated component,
if it exists, of the last error. IDL sets this system variable to the OS-defined
error code. This field is a two-element longword array. If an error has not
occurred in the current IDL session, the array contains all zeros.

On most operating systems, the error code is returned in the first element of the array
(i.e., SYS_CODE[0]) and the second element is set to 0. Some operating systems
(e.g., VMS) can return two separate error codes for some types of filesystem errors.
In these cases, SYS_CODE[1] is also set to an OS-defined error code.

• MSG — The error message of the IDL-generated component of the last error.
Whenever an error occurs, IDL sets this field to the error message (a scalar
Building IDL Applications Error Handling



426 Chapter 17: Controlling Errors
string) that corresponds to the error code. If an error has not occurred in the
current IDL session, this field is set to the null string, ' '.

• SYS_MSG — The error message of the operating system-generated
component, if it exists of the last error. When an operating system error occurs,
IDL sets this field to the OS-defined error message string. If an error has not
occurred in the current IDL session, this field is set to the null string, ' '.

• MSG_PREFIX — A string variable containing the prefix string used for the
IDL-generated component of error messages.

Using !ERROR_STATE

At the beginning of an IDL session, !ERROR_STATE contains default information.
To see this information, you can either view !ERROR_STATE from the System field
of the Variable Watch Window (see “The Variable Watch Window” on page 444) or
you can enter PRINT, !ERROR_STATE at the Command Input Line. After an error
has occurred, all of the fields of !ERROR_STATE display their updated status.

You can use MESSAGE, /RESET_ERROR STATE to reset all the fields in
!ERROR_STATE to their default values.
Error Handling Building IDL Applications



Chapter 17: Controlling Errors 427
Math Errors

The detection of math errors, such as division by zero, overflow, and attempting to
take the logarithm of a negative number, is hardware and operating system
dependent. Some systems trap more errors than other systems. On systems that
implement the IEEE floating-point standard, IDL substitutes the special floating-
point values NaN and Infinity when it detects a floating point math error. (See
“Special Floating-Point Values” on page 428.) Integer overflow and underflow is not
detected. Integer divide by zero is detected on all platforms.

A Note on Floating-Point Underflow Errors

Floating-point underflow errors occur when a non-zero result is so close to zero that
it cannot be expressed as a normalized floating-point number. In the vast majority of
cases, floating-point underflow errors are harmless and can be ignored. For more
information on floating-point numbers, see “Accuracy & Floating-Point Operations”
in Chapter 16 of the Using IDL manual.

Accumulated Math Error Status

IDL handles math errors by keeping an accumulated math error status. This status,
which is implemented as a longword, contains a bit for each type of math error that is
detected by the hardware. When IDL automatically checks and clears this indicator
depends on the value of the system variable !EXCEPT. The CHECK_MATH
function also allows you to check and clear the accumulated math error status when
desired.

!EXCEPT has three possible values:

!EXCEPT=0

Do not report exceptions.

!EXCEPT=1

The default. Report exceptions when the IDL interpreter returns to an interactive
prompt. Any math errors that occurred since the last interactive prompt (or call to
CHECK_MATH) are printed in the IDL command log. A typical message looks like:

% Program caused arithmetic error: Floating divide by 0
Building IDL Applications Math Errors



428 Chapter 17: Controlling Errors
!EXCEPT=2

Report exceptions after each IDL statement is executed. This setting also allows IDL
to report on the program context in which the error occurred, along with the line
number in the procedure. A typical message looks like:

% Program caused arithmetic error: Floating divide by 0
% Detected at  JUNK                3 junk.pro

Special Floating-Point Values

Machines which implement the IEEE standard for binary floating-point arithmetic
have two special values for undefined results: NaN (Not A Number) and Infinity.
Infinity results when a result is larger than the largest representation. NaN is the
result of an undefined computation such as zero divided by zero, taking the square-
root of a negative number, or the logarithm of a non-positive number. In many cases,
when IDL encounters the value NaN in a data set, it treats it as “missing data.” The
special values NaN and Infinity are also accessible in the read-only system variable
!VALUES. These special operands propagate throughout the evaluation process—the
result of any term involving these operands is one of these two special values. For
example:

;Multiply NaN by 3
PRINT, 3 * !VALUES.F_NAN

IDL prints:

NaN

It is important to remember that the value NaN is literally not a number, and as such
cannot be compared with a number. For example, suppose you have an array that
contains the value NaN:

A = [1.0, 2.0, !VALUES.F_NAN]
PRINT, A

IDL prints:

1.00000      2.00000          NaN

If you try to select elements of this array by comparing them with a number (using
the WHERE function, for example), IDL will generate an error:

;Print the indices of the elements of A with a value greater than
;one.
PRINT, WHERE(A GT 1.0)
Math Errors Building IDL Applications



Chapter 17: Controlling Errors 429
IDL prints:

1
% Program caused arithmetic error: Floating illegal operand

To avoid this problem, use the FINITE function to make sure arguments to be
compared are in fact valid floating-point numbers:

PRINT, WHERE(FINITE(A) EQ 1)

IDL prints the indices of the finite elements of A:

0           1

To then print the indices of the elements of A that are both finite and greater than 1.0,
you could use the command:

PRINT, WHERE(A[WHERE(FINITE(A) EQ 1)] GT 1.0)

IDL prints:

1

Similarly, if you wanted to find out which elements of an array were not valid
floating-point numbers, you could use a command like:

;Print the indices of the elements of A that are not valid
;floating-point numbers.
PRINT, WHERE(FINITE(A) EQ 0)

IDL prints:

2

Note that the special value Infinity can be compared to a floating point number. Thus,
if:

B = [1.0, 2.0, !VALUES.F_INFINITY]
PRINT, B

IDL prints:

1.00000      2.00000          Inf

and

PRINT, WHERE(B GT 1.0)

IDL prints:

1           2
Building IDL Applications Math Errors



430 Chapter 17: Controlling Errors
You can also compare numbers directly with the special value Infinity:

PRINT, WHERE(B EQ !VALUES.F_INFINITY)

IDL prints:

2

Note
On Windows and Solaris x86 platforms, using relational operators, such as EQ and
NE, with the values infinity or NaN (Not a Number) causes an “illegal operand”
error. The FINITE function’s INFINITY and NAN keywords can be used to
perform comparisons involving infinity and NaN values. For more information, see
“FINITE” on page 496.

The FINITE Function

Use the FINITE function to explicitly check the validity of floating-point or double-
precision operands on machines which use the IEEE floating-point standard. For
example, to check the result of the EXP function for validity, use the following
statement:

;Perform exponentiation.
A = EXP(EXPRESSION)

;Print error message.
IF NOT FINITE(A) THEN PRINT, 'Overflow occurred'

If A is an array, use the statement:

IF TOTAL(FINITE(A)) NE N_ELEMENTS(A) THEN

Integer Conversions

It must be stressed that when converting from floating to any of the integer types
(byte, signed or unsigned short integer, signed or unsigned longword integer, or
signed or unsigned 64-bit integer) if overflow is important, you must explicitly check
to be sure the operands are in range. Conversions to the above types from floating
point, double precision, complex, and string types do not check for overflow—they
simply convert the operand to the target integer type, discarding any significant bits
of information that do not fit.

When run on a Sun workstation, the program:

A = 2.0 ^ 31 + 2
PRINT, LONG(A), LONG(-A), FIX(A), FIX(-A), BYTE(A), BYTE(-A)
Math Errors Building IDL Applications



Chapter 17: Controlling Errors 431
(which creates a floating-point number 2 larger than the largest positive longword
integer), prints the following:

2147483647 -2147483648 -1 0 255 0
% Program caused arithmetic error: Floating illegal operand

This result is incorrect.

Warning
No error message will appear if you attempt to convert a floating number whose
absolute value is between 215 and 231 - 1 to short integer even though the result is
incorrect. Similarly, converting a number in the range of 256 to 231 - 1 from
floating, complex, or double to byte type produces an incorrect result, but no error
message. Furthermore, integer overflow is usually not detected. Your programs
must guard explicitly against it.
Building IDL Applications Math Errors



432 Chapter 17: Controlling Errors
Math Errors Building IDL Applications



Chapter 18:

Debugging an IDL
Program

The following topics are covered in this chapter:
Overview . . . . . . . . . . . . . . . . . . . . . . . . . .  434
Debugging Commands  . . . . . . . . . . . . . . .  435

The Variable Watch Window . . . . . . . . . . . 444
Building IDL Applications 433



434 Chapter 18: Debugging an IDL Program
Overview

There are several tools you can use to help you find errors in your IDL code. The Run
menu item in the IDL Development Environment provides several ways to access
IDL’s built-in debugging and executive commands. The Variable Watch Window
helps you keep track of the variables used in your program.

This chapter explains the debugging commands and contains short examples using
the IDLDE interface to debug a file.
Overview Building IDL Applications



Chapter 18: Debugging an IDL Program 435
Debugging Commands

When a file displayed in an IDL editor window has been compiled (by selecting
Compile or Memory Compile from the Run menu, or by entering .COMPILE,
.COMPILE -f, or .RUN at the IDL command prompt), a number of debugging
commands become available for selection. For more information on the Run menu,
see the Using IDL manual.

When execution is interrupted, a current-line indicator is placed next to the line that
will be executed when processing resumes. The routine being compiled need not
already be shown in an editor window. If a routine compiled with the .RUN, .RNEW,
or .COMPILE executive commands contains an error, IDLDE will display the file
automatically.

A Simple Example

A simple procedure, called BROKEN, has been included in the IDL distribution. An
error occurs when BROKEN is executed.

Start the IDLDE. Call the BROKEN procedure by entering:

BROKEN

at the IDL command line. An error is reported in the Output Log window and an
editor window containing the file BROKEN.PRO appears.

A “Variable is undefined” error has occurred. Since execution stopped at line 4, that
line is highlighted with an arrow.

Click on the Output Log window to see the error:

% Compiled module: BROKEN.
% PRINT: Variable is undefined: I.
% Execution halted at BROKEN 4

/user/local/rsi/idl50/examples/general/broken.pro
% $MAIN$

There are several ways of fixing this error. We could edit the program file to
explicitly define the variable i, or we could change the program so that it accepts a
parameter at the command line. We can also define the variable i on the fly and
continue execution of the program without making any changes to the program file.
We’ll do this first, then go back and edit the program to accept a command-line
parameter.
Building IDL Applications Debugging Commands



436 Chapter 18: Debugging an IDL Program
To define the variable i and assign it the value 10, click in the IDL command line and
enter:

i = 10

Step Through the Program

Select Step Into from the Run menu to execute line 4 with the new value of i and
step to the next program line.

The Output Log reports:

10

The current-line pointer advances to the next line in the window containing the file
BROKEN.PRO. You could continue stepping through the program by choosing Step
Into repeatedly (or by entering .STEP at the IDL command prompt).

The Trace Execution dialog offers an opportunity to automatically step through the
program. Select Trace... from the Run menu. The Trace Execution dialog appears.

Note
The Trace Execution dialog does not exist on Macintosh platforms. Selecting
Trace from the Run menu automatically steps through the program.

Click Go to automatically issue the .STEP command until the END statement is
encountered, or click Stop to halt trace execution. Moving the slider in the Trace
Execution dialog controls the length of the pauses between step commands. You can
also select whether to step into routines, executing successive .STEP commands at

Figure 18-1: Trace Execution Dialog
Debugging Commands Building IDL Applications



Chapter 18: Debugging an IDL Program 437
each line, or to step over routines, issuing successive .STEPOVER commands. For
more information, see .STEP and .STEPOVER in the IDL Reference Guide. Click
OK to dismiss the dialog.

You can also continue execution of the program without stepping through. Select
Run from the Run menu, noting that the Output Log shows that IDL calls broken.
Define the variable i in the Command Input Line. Select Run again. The Output Log
now shows that IDL calls .CONTINUE. IDL prints the resulting output to the Output
Log window:

10
20
30
40

When stepping through a main program, if the next line calls another IDL procedure
or function, you have three options with which to handle execution of the nested
program. Selecting Step Into executes statements in order by successive Step
commands. Selecting Step Over executes statements to the end of the called
function, without interactive capability. Select Step Out to continue processing until
the main program returns.

Fix the Program

To fix the program permanently, edit the first line of the program to read:

PRO BROKEN, i

Select Save from the File menu and Compile from the Run menu. IDL saves the
modified text file over the old version and compiles the modified routine. To call this
new version of BROKEN with an input argument of 10, enter:

BROKEN, 10

The Output Log window prints the result:

10
20
30
40

Breakpoints

You can suspend execution of a program temporarily by setting breakpoints in the
code. Set a breakpoint at the fifth line of BROKEN.PRO by placing the cursor in the
line that reads:

PRINT, i*2
Building IDL Applications Debugging Commands



438 Chapter 18: Debugging an IDL Program
and selecting Set Breakpoint from the Run menu. A breakpoint dot appears next to
the line. Now enter:

BROKEN, 10

The Output Log window displays the following:

10
% Breakpoint at: BROKEN              5

user/local/rsi/idl40/examples/general/broken.pro

and a current line indicator arrow marks line 5. Select Run to resume execution. To
list the breakpoints, enter HELP,/BREAKPOINT at the command line.

Setting a breakpoint allows you to inspect (or change) variable definitions as the
program executes. Since our example does not set any variables, setting a breakpoint
in BROKEN.PRO is not very informative. Breakpoints can be extremely helpful,
though, when debugging complex programs, or programs that call other routines. For
more information on working with breakpoints, see the following sections, Working
with Breakpoints on Windows/Motif Platforms, or “Working with Breakpoints on the
Macintosh Platform” on page 441.

Working with Breakpoints on Windows/Motif Platforms

You can select to edit, enable/disable, and change breakpoint properties using
Breakpoint Toolbar buttons. Additionally, through the Edit Breakpoints dialog,
breakpoints can be set for execution dependent upon a condition or enabled after the
breakpoint has been encountered a specific number of times.

The Breakpoint Toolbar Buttons

There are three buttons in the main menu bar. These are:

The Toggle Breakpoint button creates or deletes a breakpoint. Create a
breakpoint at the line where your cursor is positioned by clicking the
Toggle Breakpoint button. If a breakpoint already exists in the line where
your cursor is positioned, clicking this button removes the breakpoint.

The Enable/Disable Breakpoint button enables or disables a breakpoint.
If a breakpoint is enabled, a filled circle appears next to the line in the IDL
Editor window. If disabled, the circle is not filled. Disabled breakpoints
are ignored when you run the file.

The Edit Breakpoints button displays the Edit Breakpoints dialog. In
previous releases, this printed a listing of the current breakpoints. From
this dialog, you can list your current breakpoints, create new breakpoints,
Debugging Commands Building IDL Applications



Chapter 18: Debugging an IDL Program 439
enable or disable breakpoints, change breakpoint options, or delete
breakpoints.

The Windows Edit Breakpoints Dialog

The Edit Breakpoints dialog allows you to add, remove, and remove all breakpoints
in a file as well as the ability to move to the line in the source file that contains the
breakpoint. The following figure shows the Edit Breakpoints dialog:

To create a breakpoint using the Edit Breakpoints dialog, complete the following
steps:

1. Open the file you in which you want to set a breakpoint.

2. Display the Edit Breakpoints dialog by clicking the button in the
IDLDE Tool Bar or by selecting Run → Edit Breakpoints...

3. Place the cursor in the line in which you want to create the breakpoint in the
Editor window.

4. Select Add in the Edit Breakpoints dialog box. You will see a new entry
display in the dialog. The following table describes each property of a
breakpoint:

Figure 18-2: Edit Breakpoints Dialog
Building IDL Applications Debugging Commands



440 Chapter 18: Debugging an IDL Program
5. At this point, you can modify any of the items (except Module and Line) by
double-clicking in the entry.

Your breakpoint entry is now complete. When you run your program, execution is
halted at the breakpoints you have specified.

Item Description

E/D Specifies whether a breakpoint is enabled or disabled. If a
check mark is displayed, the breakpoint is enabled and
execution will stop when the all criteria for the breakpoint is
met.

Module Specifies the procedure or function where the breakpoint is
set.

Note - This item will not be displayed until the file has been
compiled with the new breakpoint.

Line Specifies the line number where the breakpoint occurs.

File Specifies the filename where the breakpoint occurs.

After Specifies how many times the execution must pass the
breakpoint before stopping execution. For example, if this
item is set to 0, execution will stop the first time this
breakpoint is encountered. If it is set to 9, execution will not
stop until the breakpoint has been encountered for the ninth
time.

Once The breakpoint is removed after it is encountered for the first
time.

Condition Specifies a condition to be met for the execution to stop. The
condition is a string containing an IDL expression. When a
breakpoint is encountered, the expression is evaluated. If the
expression is true (if it returns a non-zero value), program
execution is interrupted. The expression is evaluated in the
context of the program containing the breakpoint.

Table 18-1: Edit Breakpoints Description
Debugging Commands Building IDL Applications



Chapter 18: Debugging an IDL Program 441
Working with Breakpoints on the Macintosh Platform

Breakpoints can be set and manipulated through the Run menu on Macintosh. From
this menu, you can perform the following actions:

The Macintosh Edit Breakpoints Dialog

After placing breakpoints in your program, you can open the Edit Breakpoints
dialog by selecting Run → Edit Breakpoints... Through the Edit Breakpoints
dialog, shown in Figure 18-3, you can view and modify the properties of a breakpoint
as follows:

• Enable/Disable a Breakpoint — Click in the check mark field to enable or
disable a breakpoint. A checkmark indicates an enabled breakpoint. Disabled
breakpoints appear as gray bullets in the Editor window. Enabled
breakpoints with default properties appear as red bullets.

Run Menu Item Description

Set Breakpoint
Clear Breakpoint

Select Set Breakpoint to insert a breakpoint at the line
where your cursor is positioned. A red bullet, indicating an
enabled breakpoint, appears to the left of the line of code.
If a breakpoint already exists on this line, this menu item
changes to Clear Breakpoint.

Disable Breakpoint
Enable Breakpoint

Select Disable Breakpoint to prevent the program from
being halted at a line with the selected breakpoint. A
disabled breakpoint appears as a gray bullet.
Select Enable Breakpoint to reactivate a breakpoint.

Edit Breakpoints... Select Edit Breakpoints... to open the Edit Breakpoints
dialog through which you can modify multiple properties
of a breakpoint. See the The Macintosh Edit Breakpoints
Dialog for more information.

Clear All
Breakpoints

Select Clear All Breakpoints to remove all breakpoints
from the program and the Edit Breakpoints dialog.

List Breakpoints Select List Breakpoints to list all current breakpoints in
the Output Log window. Each breakpoint’s index and line
numbers are displays as well as the module and file name
in which the breakpoint occurs.

Table 18-2: Run Menu Breakpoint Selections
Building IDL Applications Debugging Commands



442 Chapter 18: Debugging an IDL Program
• View the Module Containing the Breakpoint — The Module field specifies
the procedure or function where the breakpoint occurs. This item will not be
displayed until the file has been compiled with the new breakpoint.

• View or Alter the Breakpoint Line — The line number of each breakpoint is
displayed in the Line field. You can alter the position of the breakpoint while
retaining its other properties. Click in the line field, change the number, and hit
return.

• View the File Containing the Breakpoint — The File field specifies the file
where the breakpoint occurs.

• Control when the Breakpoint is Enabled — The Break After filed allows
you to specify how many times the execution must pass the breakpoint before
the breakpoint stops execution. Click in the Break After field, enter a number
and hit return to set how many times the breakpoint is passed before being
enabled. For example, if you enter 7 in this field, execution will stop when the
breakpoint is encountered the seventh time. Breakpoints with a Break After
value appear as blue bullets in the Editor window.

• Remove a Breakpoint After it is Encountered Once — Click the Break
Once field to toggle between yes, to remove the breakpoint after a single
execution, or no, to keep the breakpoint enabled. Breakpoints that are to be
removed after a single encounter appear as yellow bullets in the Editor
window.

• Set the Conditional Execution of a Breakpoint — To enable a breakpoint
only if it meets a certain condition, click in the Condition field and enter a
string containing an IDL expression. When a breakpoint is encountered, the
expression is evaluated. If the expression is true (if it returns a non-zero value),
program execution is interrupted. The expression is evaluated in the context of
the program containing the breakpoint. Breakpoints associated with a
condition appear as green bullets in the Editor window.
Debugging Commands Building IDL Applications



Chapter 18: Debugging an IDL Program 443
• Remove a Breakpoint — To remove a breakpoint through the Edit
Breakpoints dialog, highlight the line containing the breakpoint and press the
delete key.

Figure 18-3: Breakpoints and the Edit Breakpoints Window
Building IDL Applications Debugging Commands



444 Chapter 18: Debugging an IDL Program
The Variable Watch Window

The Variable Watch window displays current variable values after IDL has completed
execution. If the calling context changes during execution — as when stepping into a
procedure or function — the variable table is replaced with a table appropriate to the
new context. While IDL is at the main program level, the Watch window remains
active and displays any variables created.

Customizing Variable Watch Window Layout

To hide the Variable Watch window, select Window → Hide Variable Watch. Select
Show Variable Watch to make it reappear. Changing the Window menu will only
affect the current IDL session.

To apply your changes to future sessions, select File → Preferences and click the
Layout tab. In the section labeled Show Windows, select or clear check boxes
associated with the windows you want to appear. Click Apply to save your changes
for future IDL sessions and OK to exit.

Note
Selection or clearing of Window menu items reflects changes in the Layout
preferences and vice versa.

The Variable Watch Interface Description

The Variable Watch window is refreshed after the IDLDE has completed execution.
Each Variable Watch window contains the following folders:

Figure 18-4: Variable Watch Window
The Variable Watch Window Building IDL Applications



Chapter 18: Debugging an IDL Program 445
• Locals

This tab contains descriptions of local variables. Local variables are created
from IDL’s main program level. For example, entering a=1 at the Command
Input Line lists the integer a in the Locals tab.

• Params

This tab contains descriptions of parameters. The variables and expressions
passed to a function or procedure are parameters. For more information, see
“Parameters” on page 296.

• Commons

This tab contains descriptions of variables contained in common blocks. The
name of each common block is shown in parentheses next to the variable
contained within it. For more information, see “Common Blocks” on page 56.

• System

This tab contains descriptions of system variables. System variables are a
special class of predefined variables available to all program units. For more
information about system variables, see Appendix D, “System Variables” in
the IDL Reference Guide.

Each tab contains a table listing the attributes of the variables included in the
category. You can size the columns by clicking on the line to the right of the title of
the column you wish to expand or shrink. Drag the mouse either left or right until you
are satisfied with the width of the column. For example, to change the width of the
Name column, click and drag on the line separating the Name field from the Type
field.

The following fields describe variable attributes:

• Name

This field shows the name of the variable. This field is read-only, except for
array subscript descriptions (see example in Using the Variable Watch Window
below).

For compound variables such as arrays, structures, pointers, and objects, click
the “+” symbol to the left of the name to show the variables included in the
compound variable. Click the “-” symbol to collapse the description.

• Type

This field shows the type of the variable. This field is read-only.
Building IDL Applications The Variable Watch Window



446 Chapter 18: Debugging an IDL Program
• Value

This field shows the value of the variable. To edit a value in UNIX, highlight
the cell by clicking on it, press the function key F2 to enter editing mode, and
enter the new value. To edit a value in Windows, double click on the cell to
highlight it and enter the new value. To edit a value on Macintosh, click on the
cell.

The Name, Type, and Value fields are displayed as when using the HELP procedure.
For more information about variables, see “Variables” on page 52.

The Variable Watch Window and Objects

Object references are expanded only if they reference non-null objects. Object data
are expanded only if the object method has finished running. Object data are read-
only and cannot be changed with the Variable Watch window.

Using the Variable Watch Window

Arrays are expanded to show one array element. Click on the “+” symbol next the
name of the array to display the initial array subscript. You can change this field to
display the characteristics of any other array element.

Note
To enter editing mode in Motif, press F2 after clicking on the cell to be edited. In
Windows, double click on the cell. On the Macintosh, click on the cell.

To edit the subscript, highlight the cell by clicking on it, and modify the name using
the arrow keys to maneuver. For example, enter the following:

;Create an array with 2 columns and 3 rows.
A=MAKE_ARRAY(2,3)

;Show the values of array A in the Output Log. They will all be
;zero.
PRINT, A

;Assign the value of 5 to the value in the array subscripted as 2.
;This is the same as entering A(0,1)=5.
A(2)=5

;Show the new values of array A.
PRINT, A
The Variable Watch Window Building IDL Applications



Chapter 18: Debugging an IDL Program 447
IDL prints:

0.00000      0.00000
5.00000      0.00000
0.00000      0.00000

It is easy to manipulate variables within the Watch window. Click on the “+”
expansion symbol next to the array A. The subscript [0,0] will be revealed beneath
the description of A. Enter editing mode and change [0,0] to [0,1].

Note
To enter editing mode in Motif, press F2 after clicking on the cell to be edited. In
Windows, double click on the cell. On the Macintosh, click on the cell.

Press Enter to effect the change. Notice that the value of the subscript is displayed as
5, as you entered from the command line. Press the Tab key to highlight the value of
the subscript [0,1]. You can change it to another number. Enter [1,0] in the subscript
name field. You can also change the value from 0.00000 to another number.

For more information about arrays, see Chapter 5, “Arrays”.
Building IDL Applications The Variable Watch Window



448 Chapter 18: Debugging an IDL Program
The Variable Watch Window Building IDL Applications



Chapter 19:

Extending the IDL
Online Help System

The following topics are covered in this chapter:
Overview . . . . . . . . . . . . . . . . . . . . . . . . . .  450
Online Help Viewers Included with IDL  .  451

Accessing Online Help from IDL  . . . . . . . 454
Alternatives to Traditional Help Systems  . 458
Building IDL Applications 449



450 Chapter 19: Extending the IDL Online Help System
Overview

IDL gives you the ability to call traditional Help files that you have created for your
applications, routines, etc. The online help system used by IDL emulates (or uses, in
the case of IDL for Windows) the Microsoft Windows Help viewer on all supported
platforms. Because the online help files are compiled, there is not a simple, no-cost
way to include user-created help topics directly in the help system on all platforms.
However, there are a number of ways to create your own help system.

The techniques described in this section vary in complexity, cost, and level of
integration with the online Help viewers included with IDL. The options covered in
this chapter include:

• Displaying online help files such as those used by IDL.

• Creating text widgets to display small amounts of help information within an
application.

• Displaying HTML files or text files using the SPAWN command.

• Displaying text files with the XDISPAYFILE procedure.
Overview Building IDL Applications



Chapter 19: Extending the IDL Online Help System 451
Online Help Viewers Included with IDL

The online Help system used by IDL emulates (or uses, in the case of IDL for
Windows) the Microsoft Windows Help viewer on all supported platforms. It is
possible to create your own online help files that can be used with the viewer. The
difficulty and expense involved in creating such files depends largely on the
platform(s) involved.

While it can be expensive to create a help system, such a system offers users the
greatest access to your help information. Online help includes the ability to navigate
through files, search specific topics and generate indices.

Additionally, IDL is already distributed with the functionality needed to read the
following types of online help files:

• Windows

• WinHelp

• HTML Help

• Macintosh

• Altura QuickHelp

• UNIX and VMS

• Bristol HyperHelp

See the following platform specific sections for more information.

Microsoft Windows

For Microsoft Windows systems, help files are relatively easy to create. Files must be
created in the Rich Text Format (RTF) and compiled with Microsoft’s help compiler,
Windows Help Workshop. The help compiler is part of the Windows Software
Developer’s Kit, and is now included in several Microsoft programming products,
including the Visual C++ development environment. The help compiler may also be
available from the Microsoft ftp site (ftp.microsoft.com) or other Microsoft online
software libraries at little or no cost.

The Windows help system is often referred to as “WinHelp”. The two components
are the viewer (WINHELP.EXE, found in the main WINDOWS directory of all
Windows systems), and the help compiler, Windows Help Workshop. There are a
number of third-party “help authoring systems” that simplify the creation of WinHelp
compatible RTF files. Also, a number of third party books describe the WinHelp
Building IDL Applications Online Help Viewers Included with IDL



452 Chapter 19: Extending the IDL Online Help System
creation process—Developing Online Help for Windows, by Scott Boggan, David
Farkas, and Joe Welinske, Sams Publishing, 1993, ISBN: 0-672-30230-6 is one that
we have found useful.

Macintosh

For Macintosh, IDL uses a WinHelp-compatible compiler and viewer licensed from
Altura Software, Inc. called QuickHelp. This compiler uses the same RTF (Rich Text
Format) files as those used by the Microsoft Help compiler. Altura Software can be
contacted at the following address:

Altura Software, Inc.
510 Lighthouse Avenue, Suite 5
Pacific Grove, CA 93950
Phone: (831) 655-8005
Fax: (831) 655-9663
WWW: http://www.altura.com

UNIX and VMS

For UNIX and VMS online help, we use a compiler and viewer from Bristol
Technology, Inc. called HyperHelp. Bristol makes a number of compilers that can
compile a variety of source files including the following:

• RTF (Rich Text Format) files.

• FrameMaker’s MIF (Maker Interchange Format) files.

• SGML (Standard Generalized Markup Language) files.

• HTML (Hypertext Markup Language) files.

• Bristol’s own simple HyperHelp Text (HHT) files.

We use the MIF compiler to create online help files from the same FrameMaker files
that produce our hardcopy manuals.

Bristol also makes a product called Bridge that takes compiled HyperHelp files and
converts them to RTF files that can be compiled with the Windows and Macintosh
help compilers described above. In this way, we can create help files for all supported
IDL platforms from a single source.

Bristol Technology can be contacted at the following address:

Bristol Technology, Inc.
39 Old Ridgebury Road
Online Help Viewers Included with IDL Building IDL Applications



Chapter 19: Extending the IDL Online Help System 453
Danbury, CT 06810-5113 USA
Phone: (203) 798-1007
Fax: (203) 798-1008
E-mail: info@bristol.com
WWW: http://www.bristol.com
Building IDL Applications Online Help Viewers Included with IDL

mailto:info@bristol.com
http://www.bristol.com


454 Chapter 19: Extending the IDL Online Help System
Accessing Online Help from IDL

The IDL ONLINE_HELP procedure can be used in your IDL program to display
help (.hlp) files and control the viewer. This command can be used from the IDL
command line or included in the event handler of a widget. You can store help files in
the help directory of the IDL distribution, or you can specify a path for your help
files.

Accessing a Help File with ONLINE_HELP

To access a Help file, use the ONLINE_HELP command at the IDL command line.
The ONLINE_HELP syntax is as follows:

ONLINE_HELP [, Value] [, BOOK=‘filename’] [, /CONTEXT] [, /FULL_PATH]
[, /HTML_HELP] [, /QUIT] [, /TOPICS]

For example, to open the IDL Online Help file, named idl.hlp, enter the following
at the IDL command line:

ONLINE_HELP, BOOK='idl'

The BOOK=‘filename’ keyword does not require you to enter the .hlp extension,
and does not require that the full path of the file be specified if it is stored in the IDL
help directory. If you have created help files and saved them in a directory other than
the default help directory for IDL, you can specify the path to your help file directory
from within the ONLINE_HELP command using the /FULL_PATH keyword. For
example, if your help file, called myhelp.hlp, exists in a directory called myapp in
the IDL distribution, the files can be access with the following command:

ONLINE_HELP, BOOK=’C:\RSI\IDL54\myapp\myhelp’, /FULL_PATH

See ONLINE_HELP in the IDL Reference Guide for details.

You can call this routine from a menu item, a button on a dialog, or from the
command line. To build help functionary into an application, you can create a help
button or a help menu item. See the following section, Creating a Simple Help
Button, for more information.

Creating Context Sensitive Help Files

When a user selects “Help” from your application, you can display online help
information relating to a specific dialog or interface, thus creating “context sensitive”
help. You can create context sensitive online help by first mapping topics in your
hyperhelp project (.hpj) file. Using the MAP section of the help project, you can
Accessing Online Help from IDL Building IDL Applications



Chapter 19: Extending the IDL Online Help System 455
define a value associated with a help topic. The following example shows the MAP
section for the IDL license wizard. Note that each topic is defined by a short string
and an unique value. See your online help documentation for complete details. The
online help files can then be easily incorporated into your application by using the
IDL ONLINE_HELP command.

[MAP]
lw_lic_wiz 0100
lw_eval_lic 0200
lw_eval_lic_finish 0300
lw_perman_lic 0400
lw_enter_perm_lic 0500
lw_finish_perm_lic 0600
lw_req_lic 0700
lw_display_req 0800
lw_prepare_email 0900
lw_finish_lic_req 1000

For more information on using the ONLINE_HELP command, see the following
section, Accessing Online Help from IDL. To explore alternatives to creating online
help, see “Alternatives to Traditional Help Systems” on page 458 for more
information.

Accessing a Context Sensitive Online Help File

Using the CONTEXT keyword of ONLINE_HELP, you can associated a specific
help file topic with a map value. In IDL for instance, the main navigation page of the
IDL Online Help system was mapped to the value 00001. This help dialog can be
opened using the following syntax:

ONLINE_HELP, 00001, /CONTEXT, BOOK ='idl'

Once you’ve created your online help file, and defined the map values, as briefly
described in “Creating Context Sensitive Help Files” on page 454, the topics can be
accessed in a variety of ways. The following example shows using a help button to
display a specific online help topic.

Creating a Simple Help Button

You can easily create and display a help file by configuring the event handler of a
simple button widget. Regardless of what method you choose to create your help
information, this allows users to access context sensitive help. The following
program displays a Help button that when clicked, displays a Help system.

;++++BEGIN:  Event Routines++++
;++Help Button Event:
Building IDL Applications Accessing Online Help from IDL



456 Chapter 19: Extending the IDL Online Help System
PRO OnPress, event

; Open the context sensitive help file.
ONLINE_HELP, BOOK = 'idl', /TOPICS

END
;+++++END:  Event Routines+++++

;++++BEGIN:  GUI Routines++++
PRO helpbutton

; Create top-level-base (background base).
base = WIDGET_BASE(/COLUMN, XSIZE = 250, $

TITLE = 'Sample Help Button')
; Create base to contain and center Help button.
; This base is contained within the top-level-base.
buttonBase = WIDGET_BASE(base, /ROW, $

/ALIGN_CENTER)
; Create Help button.  This button is contained
; within the button base, which is contained
; within the top-level-base.
button = WIDGET_BUTTON(buttonBase, VALUE = 'Help', $
   EVENT_PRO = 'OnPress')
; Display GUI.
WIDGET_CONTROL, base, /REALIZE
; Handle events.
XMANAGER, 'helpbutton', base

END
;+++++END:  GUI Routines+++++

In the running application, press the Help button to display the online help file you
have associated with this button press event.

The procedure would be similar for a help menu item. For more information on
creating and customizing widgets see Chapter 22, “Widgets” or see Chapter 21,
“Using the IDL GUIBuilder” for information on creating widgets through the IDL
GUIBuilder.

Figure 19-1: Sample Help Button
Accessing Online Help from IDL Building IDL Applications



Chapter 19: Extending the IDL Online Help System 457
Paths for Help Files

You can specify the paths for your help files with !HELP_PATH. This system
variable defines the directories IDL will search for online help files. The default
directory is the help subdirectory of the main IDL directory. To change the directory,
set the IDL_HELP_PATH environment variable using one of the following
procedures:

• For UNIX, set the IDL_HELP_PATH environment variable.

• For VMS, set the IDL_HELP_PATH logical name.

• For Windows, specify the system variable for the help path. See DEFSYSV in
the IDL Reference Guide for more information.

• For Macintosh, specify the system variable for the help path. See DEFSYSV in
the IDL Reference Guide for more information.

You can also expand the directories that IDL will search for help files using path
expansion. See EXPAND_PATH in the IDL Reference Guide for more information.
Building IDL Applications Accessing Online Help from IDL



458 Chapter 19: Extending the IDL Online Help System
Alternatives to Traditional Help Systems

Since IDL is a programming language, there are many ways of creating a Help
system for your users. Some options include:

• Displaying help information in a text widget.

• Using SPAWN to display HTML pages in a Web browser

• Using SPAWN to display ASCII text files in any text editor

• Using XDISPLAYFILE and an IDL Text Widget to display an ASCII text file.

Creating a Text Widget to Display Help Text

By associating the event of a button with a text widget, you can easily display small
amounts of help information within a application interface. To display larger text
files, consider using the XDISPLAYFILE procedure as described in “Displaying a
Text Help File Using XDISPLAYFILE” on page 460.

The following program displays help text within an application:

;++++BEGIN:  Event Routines++++
;++Help Button Event
PRO OnPress, event

; Get the widget ID of the text widget.
textID = WIDGET_INFO(event.top, $

FIND_BY_UNAME = 'widgettext')

; Define the message to be displayed in the text
; widget.
WIDGET_CONTROL, textID, SET_VALUE = 'This is an ' + $

'example of using a text widget to display ' + $
'help information'

END
;+++++END:  Event Routines+++++

;++++BEGIN:  GUI Routines++++
PRO helpbuttonandtext

; Create top-level-base (background base).
base = WIDGET_BASE(/COLUMN, XSIZE = 250, $

TITLE = 'Sample Help Button')
; Create base to contain and center Help button.
; This base is contained within the top-level-base.
Alternatives to Traditional Help Systems Building IDL Applications



Chapter 19: Extending the IDL Online Help System 459
buttonBase = WIDGET_BASE(base, /ROW, $
/ALIGN_CENTER)

; Create Help button.  This button is contained
; within the button base, which is contained
; within the top-level-base.
button = WIDGET_BUTTON(buttonBase, VALUE = 'Help', $
   EVENT_PRO = 'OnPress')
; Create text widget.  This text widget is
; contained within the top-level-base.
text = WIDGET_TEXT(base, /SCROLL, /WRAP, $

YSIZE = 3, UNAME = 'widgettext')
; Display GUI.
WIDGET_CONTROL, base, /REALIZE
; Handle events.
XMANAGER, 'helpbutton', base

END
;+++++END:  GUI Routines+++++

When running this example, click the Help button to display the sample text.:

Displaying HTML or Text Help Files Using SPAWN

Another alternative to creating online help is to create your help files using HTML
files. The HTML files can be displayed in a designated Web browser, and called from
your application using the SPAWN procedure. You can easily incorporate this into an
application by placing the SPAWN command into the event handler of a help button
or help menu item.

For example, the following SPAWN command executed on a Windows platform
would look like the following:

SPAWN, "c:\program files\netscape\communicator\program
\netscape.exe my_file_path.htm", /NOSHELL, /NOWAIT

Figure 19-2: Sample Help Button to Display Text
Building IDL Applications Alternatives to Traditional Help Systems



460 Chapter 19: Extending the IDL Online Help System
where my_file_path.htm is the path and filename of the HTML file you want to
open.

If you have stored your HTML files in a directory called myhelp in the IDL 5.4
directory, the path would be as follows:

SPAWN, "c:\program files\netscape\communicator\program
\netscape.exe c:\rsi\idl54\myhelp\help.htm", /NOSHELL,
/NOWAIT

To use the SPAWN procedure to read a text or HTML help file, you must specify the
path of the application that will be used to open the file as well as the path of the file
to be opened. Therefore, the SPAWN option may be most useful for in-house help
file applications. For more information, see SPAWN in the IDL Reference Guide.

Another HTML option is to use the MK_HTML_HELP procedure to create HTML-
formatted documentation from standard IDL documentation headers. These files can
then be viewed with a web browser. See MK_HTML_HELP in the IDL Reference
Guide for details.

Displaying a Text Help File Using XDISPLAYFILE

The IDL XDISPLAYFILE procedure displays an ASCII text file using a predefined
widget interface. For example, enter the following statement at the IDL command
prompt:

XDISPLAYFILE, 'relnotes.txt'

You can create text files of your help information and display them by inserting the
XDISPLAYFILE procedure into the event handler of a button or menu item. If you
store your text files in the IDL directory, you do not need to specify the entire path of
the text file. See XDISPLAYFILE in the IDL Reference Guide for more details.
Alternatives to Traditional Help Systems Building IDL Applications



Part IV: Using IDL
Objects





Chapter 20:

Object Basics
The following topics are covered in this chapter:
Object-Oriented Programming  . . . . . . . . .  464
IDL Object Overview  . . . . . . . . . . . . . . . .  465
Class Structures . . . . . . . . . . . . . . . . . . . . .  467
Inheritance . . . . . . . . . . . . . . . . . . . . . . . . .  469
Object Heap Variables . . . . . . . . . . . . . . . .  471
Null Objects  . . . . . . . . . . . . . . . . . . . . . . .  473

The Object Lifecycle . . . . . . . . . . . . . . . . . 474
Operations on Objects  . . . . . . . . . . . . . . . . 477
Obtaining Information about Objects  . . . . 479
Method Routines  . . . . . . . . . . . . . . . . . . . . 481
Method Overriding  . . . . . . . . . . . . . . . . . . 485
Object Examples  . . . . . . . . . . . . . . . . . . . . 488
Building IDL Applications 463



464 Chapter 20: Object Basics
Object-Oriented Programming

Traditional programming techniques make a strong distinction between routines
written in the programming language (procedures and functions in the case of IDL)
and data to be acted upon by the routines. Object oriented programming begins to
remove this distinction by melding the two into objects that can contain both routines
and data. Object orientation provides a layer of abstraction that allows the
programmer to build robust applications from groups of reusable elements.

Beginning in version 5.0, IDL provides a set of tools for developing object-oriented
applications. IDL’s Object Graphics engine is object-oriented, and a class library of
graphics objects allows you to create applications that provide equivalent graphics
functionality regardless of your (or your users’) computer platform, output devices,
etc. As an IDL programmer, you can use IDL’s traditional procedures and functions
as well as the new object features to create your own object modules. Applications
built from object modules are, in general, easier to maintain and extend than their
traditional counterparts.

This chapter describes how to use object techniques with IDL. A complete discussion
of object orientation is beyond the scope of this book—if you are new to object
oriented programming, consult one of the many references on object oriented
program that are available.
Object-Oriented Programming Building IDL Applications



Chapter 20: Object Basics 465
IDL Object Overview

IDL objects are actually special heap variables, which means that they are global in
scope and provide explicit user control over their lifetimes. Object heap variables can
only be accessed via object references. Object references are discussed in this
chapter. Heap variables in general are discussed in detail in “Heap Variables” on
page 121.

Briefly, IDL provides support for the following object concepts and mechanisms:

Classes and Instances

IDL objects are created as instances of a class, which is defined in the form of an IDL
structure. The name of the structure is also the class name for the object. The instance
data of an object is an IDL structure contained in the object heap variable, and can
only be accessed by special functions and procedures, called methods, which are
associated with the class. Class structures are discussed in “Class Structures” on
page 467.

Encapsulation

Encapsulation is the ability to combine data and the routines that affect the data into a
single object. IDL accomplishes this by only allowing access to an object’s instance
data via that object’s methods. Data contained in an object is hidden from all but the
object’s own methods.

Methods

IDL allows you to define method procedures and functions using all of the
programming tools available in IDL. Method routines are identified as belonging to
an object class via a routine naming convention. Methods are discussed in detail in
“Method Routines” on page 481.

Polymorphism

Polymorphism is the ability to create multiple object types that support the same
operations. For example, many of IDL’s graphics objects support an operation called
“Draw,” which sends graphics output to a specified place. The “Draw” operation is
different in different contexts; sending a graphic to a printer is different from writing
it to a file. Polymorphism allows the details of the differences to remain hidden—all
you need to know is that a given object supports the “Draw” operation.
Building IDL Applications IDL Object Overview



466 Chapter 20: Object Basics
Inheritance

Inheritance is the ability of an object class to inherit the behavior of other object
classes. This means that when writing a new object class that is very much like an
existing object class, you need only program the functions that are different from
those in the inherited class. IDL supports multiple inheritance—that is, an object can
inherit qualities from any number of other existing object classes. Inheritance is
discussed in detail in “Inheritance” on page 469.

Persistence

Persistence is the ability of objects to remain in existence in memory after they have
been created, allowing you to alter their behavior or appearance after their creation.
IDL objects persist until you explicitly destroy them, or until the end of the IDL
session. In practice, object persistence removes the need (in traditional IDL
programs) to re-execute IDL commands that create an item (a plot, for example) in
order to change a detail of the item. For example, once you have created a graphic
object containing a plot, you can alter any aspect of the plot “on the fly,” without re-
creating it. Similarly, having created an object containing a plot, you need not
recreate the plot in order to print, save to an image file, or re-display it.

IDL objects also persist in the sense that you can use the SAVE and RESTORE
routines to save and recreate objects between IDL sessions.
IDL Object Overview Building IDL Applications



Chapter 20: Object Basics 467
Class Structures

Object instance data is contained in named IDL structures. We will use the term class
structure to refer to IDL structures containing object instance data.

Beyond the restriction that class structures must be named structures, there are no
limits on what a class structure contains. Class structures can include data of any type
or organization, including pointers and object references. When an object is created,
the name of the class structure becomes the name of the class itself, and thus serves to
define the names of all methods associated with the class. For example, if we create
the following class structure:

struct = { Class1, data1:0L, data2:FLTARR(10) }

any objects created from the class structure Class1 would have the same two fields
(data1, a long integer, and data2, a ten-element floating-point array) and any
methods associated with the class would have the name Class1::method, where
method is the actual name of the method routine. Methods are discussed in detail in
“Method Routines” on page 481.

Note
When a new instance of a structure is created from an existing named structure, all
of the fields in the newly-created structure are zeroed. This means that fields
containing numeric values will contain zeros, fields containing string values will
contain null strings, and fields containing pointers or objects will contain null
pointers or null objects. In other words, no matter what data the original structure
contained, the new structure will contain only a template for that type of data. This
is true of objects as well; a newly created object will contain a zeroed copy of the
class structure as its instance data.

It is important to realize that creating a class structure does not create an object.
Objects can only be created by calling the OBJ_NEW or OBJARR function with the
name of the class structure as the argument, and can only be accessed via the returned
object reference. In addition, object methods can only be called on object, and not on
class structures themselves.

Once defined, a given class structure type cannot be changed. If a structure definition
is executed and the structure already exists, each tag name and the structure of each
tag field must agree with the original definition. To redefine a structure, you must
either reset or exit the current IDL session.
Building IDL Applications Class Structures



468 Chapter 20: Object Basics
Automatic Class Structure Definition

If IDL finds a reference to a structure that has not been defined, it will search for a
structure definition procedure to define it. (This is true of all structure references, not
just class structures.) Automatic structure definition is discussed in “Automatic
Structure Definition” on page 114. Briefly, if IDL encounters a structure reference for
a structure type that has not been defined, it searches for a routine with a name of the
form

STRUCT__DEFINE

where STRUCT is the name of the structure type. Note that there are two underscores
in the name of the structure definition routine.

The following is an example of a structure definition procedure that defines a
structure that will be used for the class CNAME.

PRO CNAME__DEFINE
struct = { CNAME, data1:0L, data2:FLTARR(10) }

END

This defines a structure named CNAME with 2 data fields (data1, a long integer,
and data2, a ten-element floating-point array). If you tell IDL to create an object of
type CNAME before this structure has been defined, IDL will search for the
procedure CNAME__DEFINE to define the class structure before attempting to
create the object. If the CNAME__DEFINE procedure has not yet been compiled,
IDL will use its normal routine searching algorithm to attempt to find a file named
CNAME__DEFINE.PRO. If IDL cannot find a defined structure or structure
definition routine, the object-creation operation will fail.

Note
If you are creating structure definitions on the fly, the possibility exists that you will
run into namespace conflicts — that is, a structure with the same name as the
structure you are attempting to create may already exist. This can be a problem if
you are developing object-oriented applications for others, since you probably do
not have much control over the IDL environment on your clients’ systems. You can
avoid most problems by creating a unique namespace for your routines; Research
Systems does this by prefixing the names of objects with the letters “IDL”. To be
completely sure that the objects created by your programs are what you expect,
however, you should have the program inspect the created structures and handle
errors appropriately.
Class Structures Building IDL Applications



Chapter 20: Object Basics 469
Inheritance

When defining a class structure, use the INHERITS specifier to indicate that this
structure inherits instance data and methods from another class structure. For
example, if we defined a class structure called “circle,” as follows:

struct = { circle, x:0, y:0, radius:0 }

we can define a subclass of the “circle” class like this:

struct = { filled_circle, color:0, INHERITS circle }

You can use the INHERITS specifier in any structure definition. However, when the
structure being defined is a class structure (that is, an object will be created from the
structure), inheritance affects both the structure definition and the object methods
available to the object that inherits. The INHERITS specifier is discussed in
“Structure Inheritance” on page 100.

When a class structure inherits from another class structure, it is said to be a subclass
of the class it inherits from. Similarly, the class that is inherited from is called a
superclass of the new class. Defining a subclass of an existing class in this manner
has two consequences. First, the class structure for the subclass is constructed as if
the elements of the inherited class structure were included in-line in the structure
definition. In our example, the command defining the “filled_circle” class above
would create the followings structure definition:

{ filled_circle, color:0, x:0, y:0, radius:0 }

Note that the data fields from the inherited structure definition appear in-line at the
point where the INHERITS specifier appears.

The second consequence of defining a subclass structure that inherits from another
class structure is that when an object is created from the subclass structure, that object
inherits the methods of the superclass as well as its data fields. That is, if an object of
the superclass type has a method, that method is available to objects created from the
subclass as well. In our example above, say we create an object of type circle and
define a Print method for it. Any objects of type filled_circle will also have access to
the Print method defined for circle.

IDL allows multiple inheritance. This means that you can include the INHERITS
specifier as many times as you desire in a structure definition, as long as all of the
resulting data fields have unique names. Data fields must have unique names because
when the class structure definition is built, the tag names are included in-line at the
point where the INHERITS specifier appears. Duplicate tag names will cause the
Building IDL Applications Inheritance



470 Chapter 20: Object Basics
structure definition to fail; it is your responsibility as a programmer to ensure that tag
names are not used more than once in a structure definition.

Note
The requirement that names be unique applies only to data fields. It is perfectly
legitimate (and often necessary) for subclasses to have methods with the same
names as methods belonging to the superclass. See “Method Overriding” on
page 485 for details.

If a structure referred to by an INHERITS specifier has not been defined in the
current IDL session, IDL will attempt to define it in the manner described in
“Automatic Class Structure Definition” on page 468.
Inheritance Building IDL Applications



Chapter 20: Object Basics 471
Object Heap Variables

Object heap variables are IDL heap variables that are accessible only via object
references. While there are many similarities between object references and pointers,
it is important to understand that they are not the same type, and cannot be used
interchangeably. Object heap variables are created using the OBJ_NEW and
OBJARR functions. For more information on heap variables and pointers, see “IDL
Pointers” on page 126.

Heap variables are a special class of IDL variables that have global scope and explicit
user control over their lifetime. They can be basic IDL variables, accessible via
pointers, or objects, accessible via object references. In IDL documentation of
pointers and objects, heap variables accessible via pointers are called pointer heap
variables, and heap variables accessible via object references are called object heap
variables.

Note
Pointers and object references have many similarities, the strongest of which is that
both point at heap variables. It is important to understand that they are not the same
type, and cannot be used interchangeably. Pointers and object references are used to
solve different sorts of problems. Pointers are useful for building dynamic data
structures, and for passing large data around using a lightweight token (the pointer
itself) instead of copying data. Objects are used to apply object oriented design
techniques and organization to a system. It is, of course, often useful to use both in
a given program.

Heap variables are global in scope, but do not suffer from the limitations of
COMMON blocks. That is, heap variables are available to all program units at all
times. (Remember, however, that IDL variables containing pointers to heap variables
are not global in scope and must be declared in a COMMON block if you want to
share them between program units.)

Heap variables:

• Facilitate object oriented programming.

• Provide full support for Save and Restore. Saving a pointer or object reference
automatically causes the associated heap variable to be saved as well. This
means that if the heap variable contains a pointer or object reference, the heap
variables they point to are also saved. Complicated self-referential data
structures can be saved and restored easily.
Building IDL Applications Object Heap Variables



472 Chapter 20: Object Basics
• Are manipulated primarily via pointers or object references using built in
language operators rather than special functions and procedures.

• Can be used to construct arbitrary, fully general data structures in conjunction
with pointers.

Dangling References

If a heap variable is destroyed, any remaining pointer variable or object reference that
still refers to it is said to contain a dangling reference. Unlike lower level languages
such as C, dereferencing a dangling reference will not crash or corrupt your IDL
session. It will, however, fail with an error message.

There are several possible approaches to avoiding such errors. The best option is to
structure your code such that dangling references do not occur. You can, however,
verify the validity of pointers or object references before using them (via the
PTR_VALID or OBJ_VALID functions) or use the CATCH mechanism to recover
from the effect of such a dereferencing.

Heap Variable “Leakage”

Heap variables are not reference counted—that is, IDL does not keep track of how
many references to a heap variable exist, or stop the last such reference from being
destroyed—so it is possible to lose access to them and the memory they are using.
See “Heap Variables” on page 121 for additional details.
Object Heap Variables Building IDL Applications



Chapter 20: Object Basics 473
Null Objects

The Null Object is a special object reference that is guaranteed to never point at a
valid object heap variable. It is used by IDL to initialize object reference variables
when no other initializing value is present. It is also a convenient value to use when
defining structure definitions for fields that are object references, since it avoids the
need to have a pre-existing valid object reference.

Null objects are created when you call an object-creation routine but do not specify a
class structure to be used as the new object’s template. The following statement
creates a null object:

nullobj = OBJ_NEW()
Building IDL Applications Null Objects



474 Chapter 20: Object Basics
The Object Lifecycle

As discussed above, objects are persistent, meaning they exist in memory until you
destroy them. We can break the life of an object into three phases: creation and
initialization, use, and destruction. Object lifecycle routines allow the creation and
destruction of object references; lifecycle methods associated with an object allow
you to control what happens when an object is created or destroyed.

This section will discuss the first and last phases of the object lifecycle; the remainder
of this chapter discusses manipulation of existing objects and use of object method
routines.

Creation and Initialization

Object references are created using one of two lifecycle routines: OBJ_NEW or
OBJARR. Newly created objects are initialized upon creation in two ways:

1. The object reference is created based on the class structure specified,

2. The object’s INIT method (if it has one) is called to initialize the object’s
instance data (contained in fields defined by the class structure). If the object
does not have an INIT method, the object’s superclasses (if any) are searched
for an INIT method.

The INIT Method

An object’s lifecycle method INIT is a function named Class::INIT (where Class is
the actual name of the class). The purpose of the INIT method is to populate a newly-
created object with instance data. INIT should return a scalar TRUE value (such as 1)
if the initialization is successful, and FALSE (such as 0) if the initialization fails.

The INIT method is unusual in that it cannot be called outside an object-creation
operation. This means that—unlike most object methods—you cannot call the INIT
method on an object directly. You can, however, call an object’s INIT method from
within the INIT method of a subclass of that object. This allows you to specify
parameters used by the superclass’ INIT method along with those used by the INIT
method of the object being created. In practice, this is often done using the _EXTRA
keyword. See“Keyword Inheritance” on page 301 for details.

The OBJ_NEW Function

Use the OBJ_NEW function to create an object reference to a new object heap
variable. If you supply the name of a class structure as its argument, OBJ_NEW
creates a new object containing an instance of that class structure. Note that the fields
The Object Lifecycle Building IDL Applications



Chapter 20: Object Basics 475
of the newly-created object’s instance data structure will all be empty. For example,
the command:

obj1 = OBJ_NEW('ClassName')

creates a new object heap variable that contains an instance of the class structure
ClassName, and places an object reference to this heap variable in obj1. If you do
not supply an argument, the newly-created object will be a null object.

When creating an object from a class structure, OBJ_NEW goes through the
following steps:

1. If the class structure has not been defined, IDL will attempt to find and call a
procedure to define it automatically. See “Automatic Class Structure
Definition” on page 468 for details. If the structure is still not defined,
OBJ_NEW fails and issues an error.

2. If the class structure has been defined, OBJ_NEW creates an object heap
variable containing a zeroed instance of the class structure.

3. Once the new object heap variable has been created, OBJ_NEW looks for a
method function named Class::INIT (where Class is the actual name of the
class). If an INIT method exists, it is called with the new object as its implicit
SELF argument, as well as any arguments and keywords specified in the call to
OBJ_NEW. If the class has no INIT method, the usual method-searching rules
are applied to find one from a superclass. For more information on methods
and method-searching rules, see “Method Routines” on page 481.

Note
OBJ_NEW does not call all the INIT methods in an object’s class hierarchy.
Instead, it simply calls the first one it finds. Therefore, the INIT method for a class
should call the INIT methods of its direct superclasses as necessary.

4. If the INIT method returns true, or if no INIT method exists, OBJ_NEW
returns an object reference to the heap variable. If INIT returns false,
OBJ_NEW destroys the new object and returns the NULL object reference,
indicating that the operation failed. Note that in this case the CLEANUP
method is not called.

See OBJ_NEW in the IDL Reference Guide for further details.

The OBJARR Function

Use the OBJARR function to create an array of objects of up to eight dimensions.
Every element of the array created by OBJARR is set to the null object. For example,
Building IDL Applications The Object Lifecycle



476 Chapter 20: Object Basics
the following command creates a 3 by 3 element object reference array with each
element contain the null object reference:

obj2 = OBJARR(3, 3)

See OBJARR in the IDL Reference Guide for further details.

Destruction

Use the OBJ_DESTROY procedure to destroy an object. If the object’s class, or one
of its superclasses, supplies a procedure method named CLEANUP, that method is
called, and all arguments and keywords passed by the user are passed to it. The
CLEANUP method should perform any required cleanup on the object and return.
Whether a CLEANUP method actually exists or not, IDL will destroy the heap
variable representing the object and return.

The CLEANUP method is unusual in that it cannot be called outside an object-
destruction operation. This means that—unlike most object methods—you cannot
call the CLEANUP method on an object directly. You can, however, call an object’s
CLEANUP method from within the CLEANUP method of a subclass of that object.

Note that the object references themselves are not destroyed. Object references that
refer to nonexistent object heap variables are known as dangling references, and are
discussed in more detail in “Dangling References” on page 133.

See OBJ_DESTROY in the IDL Reference Guide for further details.
The Object Lifecycle Building IDL Applications



Chapter 20: Object Basics 477
Operations on Objects

Object reference variables are not directly usable by many of the operators, functions,
or procedures provided by IDL. You cannot, for example, do arithmetic on them or
plot them. You can, of course, do these things with the contents of the structures
contained in the object heap variables referred to by object references, assuming that
they contain non-object data.

There are four IDL operators that work with object reference variables: assignment,
method invocation, EQ, and NE. In addition, the structure dot operator (.) is allowed
within methods of a class. The remaining operators (addition, subtraction, etc.) do not
make any sense for object references and are not defined.

Many non-computational functions and procedures in IDL do work with object
references. Examples are SIZE, N_ELEMENTS, HELP, and PRINT. It is worth
noting that the only I/O allowed directly on object reference variables is default
formatted output, in which they are printed as a symbolic description of the heap
variable they refer to. This is merely a debugging aid for the IDL programmer—
input/output of object reference variables does not make sense in general and is not
allowed. Please note that this does not imply that I/O on the contents of non-object
instance data contained in heap variables is not allowed. Passing non-object instance
data contained in an object heap variable to the PRINT command is a simple example
of this type of I/O.

Assignment

Assignment works in the expected manner—assigning an object reference to a
variable gives you another variable with the same reference. Hence, after executing
the statements:

;Define a class structure.
struct = { cname, data1:0.0 }

;Create an object.
A = OBJ_NEW('cname')

;Create a second object reference.
B = A

HELP, A, B

IDL prints:

A               OBJREF    = <ObjHeapVar1(CNAME)>
B               OBJREF    = <ObjHeapVar1(CNAME)>
Building IDL Applications Operations on Objects



478 Chapter 20: Object Basics
Note that both A and B are references to the same object heap variable.

Method Invocation

In order to perform an action on an object’s instance data, you must call one of the
object’s methods. (See “Method Routines” on page 481 for more on methods.) To call
a method, you must use the method invocation operator, -> (the hyphen followed by
the greater-than sign). The syntax is:

ObjRef -> Method

where ObjRef is an object reference and Method is a method belonging either to the
object’s class or to one of its superclasses. Method may be specified either partially
(using only the method name) or completely using both the class name and method
name, connected with two colons:

ObjRef -> Class::Method

Equality and Inequality

The EQ and NE operators allow you to compare object references to see if they refer
to the same object heap variable. For example:

;Define a class structure.
struct = {cname, data:0.0}

;Create an object.
A = OBJ_NEW('CNAME')

;B refers to the same object as A.
B = A

;C contains a null object reference.
C = OBJ_NEW()

PRINT, 'A EQ B: ', A EQ B & $
PRINT, 'A NE B: ', A NE B & $
PRINT, 'A EQ C: ', A EQ C & $
PRINT, 'C EQ NULL: ', C EQ OBJ_NEW() & $
PRINT, 'C NE NULL:', C NE OBJ_NEW()

IDL prints:

A EQ B: 1
A NE B: 0
A EQ C: 0
C EQ NULL: 1
C NE NULL: 0
Operations on Objects Building IDL Applications



Chapter 20: Object Basics 479
Obtaining Information about Objects

Three IDL routines allow you to obtain information about an existing object:

OBJ_CLASS

Use the OBJ_CLASS function to obtain the class name of a specified object, or to
obtain the names of a specified object’s direct superclasses. For example, if we create
the following class structures:

struct = {class1, data1:0.0 }
struct = {class2, data2a:0, data2b:0L, INHERITS class1 }

We can now create an object and use OBJ_CLASS to determine its class and
superclass membership.

;Create an object.
A = OBJ_NEW('class2')

;Print A’s class membership.
PRINT, OBJ_CLASS(A)

IDL prints:

CLASS2

Or you can print as superclasses:

;Print A’s superclasses.
PRINT, OBJ_CLASS(A, /SUPERCLASS)

IDL prints:

CLASS1

See OBJ_CLASS in the IDL Reference Guide for further details.

OBJ_ISA

Use the OBJ_ISA function to determine whether a specified object is an instance or
subclass of a specified object. For example, if we have defined the object A as above:

IF OBJ_ISA(A, 'class2') THEN $
PRINT, 'A is an instance of class2.'

IDL prints:

A is an instance of class2.

See OBJ_ISA in the IDL Reference Guide for further details.
Building IDL Applications Obtaining Information about Objects



480 Chapter 20: Object Basics
OBJ_VALID

Use the OBJ_VALID function to verify that one or more object references refer to
valid and currently existing object heap variables. If supplied with a single object
reference as its argument, OBJ_VALID returns TRUE (1) if the reference refers to a
valid object heap variable, or FALSE (0) otherwise. If supplied with an array of
object references, OBJ_VALID returns an array of TRUE and FALSE values
corresponding to the input array. For example:

;Create a class structure.
struct = {cname, data:0.0}

;Create a new object.
A = OBJ_NEW('CNAME')

IF OBJ_VALID(A) PRINT, "A refers to a valid object." $
ELSE PRINT, "A does not refer to a valid object."

IDL prints:

A refers to a valid object.

If we destroy the object:

;Destroy the object.
OBJ_DESTROY, A

IF OBJ_VALID(A) PRINT, "A refers to a valid object." $
ELSE PRINT, "A does not refer to a valid object."

IDL prints:

A does not refer to a valid object.

See OBJ_VALID in the IDL Reference Guide for further details.
Obtaining Information about Objects Building IDL Applications



Chapter 20: Object Basics 481
Method Routines

IDL objects can have associated procedures and functions called methods. Methods
are called on objects via their object references using the method invocation operator.

While object methods are constructed in the same was as any other IDL procedure or
function, they are different from other routines in the following ways:

• Object methods are defined using a special naming convention that
incorporates the name of the class to which the method belongs.

• All method routines automatically pass an implicit argument named self,
which contains the object reference of the object on which the method is
called.

• Object methods cannot be called on their own. You must use the method
invocation operator and supply a valid object reference, either of the class the
method belongs to or of one of that class’ subclasses.

Defining Method Routines

Method routines are defined in the same way as other IDL procedures and functions,
with the exception that the name of the class to which they belong, along with two
colons, is prepended to the method name:

PRO ClassName::Method
IDL statements

END

or

FUNCTION ClassName::Method, Argument1
IDL statements

RETURN, value
END

For example, suppose we create two objects, each with its own “print” method.

First, define two class structures:

struct = { class1, data1:0.0 }
struct = { class2, data2a:0, data2b:0L, INHERITS class1 }

Now we define two “print” methods to print the contents of any objects of either of
these two classes. (If you are typing this at the IDL command line, enter the .RUN
command before each of the following procedure definitions.)
Building IDL Applications Method Routines



482 Chapter 20: Object Basics
PRO class1::Print1
PRINT, self.data1

END
PRO class2::Print2

PRINT, self.data1
PRINT, self.data2a, self.data2b

END

Once these procedures are defined, any objects of class1 have access to the method
Print1, and any objects of class2 have access to both Print1 and Print2 (because
class2 is a subclass of—it inherits from—class1). Note that the Print2 method prints
the data1 field inherited from class1.

Note
It is not necessary to give different method names to methods from different
classes, as we have done here with Print1 and Print2. In fact, in most cases both
methods would have simply been called Print, with each object class knowing only
about its own version of the method. We have given the two procedures different
names here for instructional reasons; see “Method Overriding” on page 485 for a
more complete discussion of method naming.

The Implicit Self Argument

Every method routine has an implicit argument parameter named self. The self
parameter always contains the object reference of the object on which the method is
called. In the method routines created above, self is used to specify which object the
data fields should be printed from.

You do not need to explicitly pass the self argument; in fact, if you try to specify an
argument called self when defining a method routine, IDL will issue an error.

Calling Method Routines

You must use the method invocation operator (->) to call a method on an object. The
syntax is slightly different from other routine invocations:

;For a procedure method.
ObjRef -> Method

;For a function method.
Result = ObjRef -> Method()
Method Routines Building IDL Applications



Chapter 20: Object Basics 483
Where ObjRef is an object reference belonging to the same class as the Method, or to
one of that class’ subclasses. We can illustrate this behavior using the Print1 and
Print2 methods defined above.

First, define two new objects:

A = OBJ_NEW('class1')
B = OBJ_NEW('class2')

We can call Print1 on the object A as follows:

A -> Print1

IDL prints:

0.00000

Similarly, we can call Print2 on the object B:

B -> Print2

IDL prints:

0.00000
0           0

Since the object B inherits its properties from class1, we can also call Print1 on the
object B:

B -> Print1

IDL prints:

0.00000

We cannot, however, call Print2 on the object A, since class1 does not inherit the
properties of class2:

A -> Print2

IDL prints:

% Attempt to call undefined method: 'CLASS1::PRINT2'.

Searching for Method Routines

When a method is called on an object reference, IDL searches for it as with any
procedure or function, and calls it if it can be found, following the naming convention
established for structure definition routines. (See “Automatic Class Structure
Definition” on page 468.) In other words, IDL discovers methods as it needs them in
the same way as regular procedures and functions, with the exception that it searches
for files named
Building IDL Applications Method Routines



484 Chapter 20: Object Basics
classname__method.pro

rather than simply

method.pro

Remember that there are two underscores in the file name, and two colons in the
method routine’s name. See “Executing Program Files” in Chapter 2 of Using IDL
for details.

Note
If you are working in an environment where the length of filenames is limited, you
may want to consider defining all object methods in the same .pro file you use to
define the class structure. This practice avoids any problems caused by the need to
prepend the classname and the two underscore characters to the method name. If
you must use different .pro files, make sure that all class (and superclass) definition
filenames are unique in the first eight characters.
Method Routines Building IDL Applications



Chapter 20: Object Basics 485
Method Overriding

Unlike data fields, method names can be duplicated. This is an important feature that
allows method overriding, which in turn facilitates polymorphism in the design of
object-oriented programs. Method overriding allows a subclass to provide its own
implementation of a method already provided by one of its superclasses. When a
method is called on an object, IDL searches for a method of that class with that name.
If found, the method is called. If not, the methods of any inherited object classes are
examined in the order their INHERITS specifiers appear in the structure definition,
and the first method found with the correct name is called. If no method of the
specified name is found, an error occurs.

The method search proceeds depth first, left to right. This means that if an object’s
class does not provide the method called directly, IDL searches through inherited
classes by first searching the leftmost included class—and all of its superclasses—
before proceeding to the next inherited class to the right. If a method is defined by
more than a single inherited structure definition, the first one found is used and no
warning is generated. This means that class designers should pick non-generic names
for their methods as well as their data fields. For example, suppose we have defined
the following classes:

struct = { class1, data1}
struct = { class2, data2a:0, data2b:0.0, inherits class1 }
struct = { class3, data3:'', inherits class2, inherits class1 }
struct = { class 4, data4:0L, inherits class2, inherits class3 }

Furthermore, suppose that both class1 and class3 have a method called Print
defined.

Now suppose that we create an object of class4, and call the Print method:

A = OBJ_NEW('class4')
A -> Print

IDL takes the following steps:

1. Searches class4 for a Print method. It does not find one.

2. Searches the leftmost inherited class (class2) in the class definition structure
for a Print method. It does not find one.

3. Searches any superclasses of class2 for a Print method. It finds the class1 Print
method and calls it on A.

Notice that IDL stops searching when it finds a method with the proper name. Thus,
IDL doesn’t find the Print method that belongs to class3.
Building IDL Applications Method Overriding



486 Chapter 20: Object Basics
Specifying Class Names in Method Calls

If you specify a class name when calling an object method, like so:

ObjRef -> classname::method

Where classname is the name of one of the object’s superclasses, IDL will search
classname and any of classname’s superclasses for the method name. IDL will not
search the object’s own class or any other classes the object inherits from.

This type of method call is especially useful when a class has a method that overrides
a superclass method and does its job by calling the superclass method and then
adding functionality. In our simple example from “Calling Method Routines” on
page 482, above, we could have defined a Print method for each class, as follows:

PRO class1::Print
PRINT, self.data1

END
PRO class2::Print

self -> class1::Print
PRINT, self.data2a, self.data2b

END

In this case, to duplicate the behavior of the Print1 and Print2 methods, we make the
following method calls:

A -> Print

IDL prints:

0.00000

And now the B:

B -> Print

IDL prints:

0.00000
0           0

Now we’ll use the second method:

B -> class1::Print

IDL prints:

0.00000

And now A:

A -> class2::Print
Method Overriding Building IDL Applications



Chapter 20: Object Basics 487
IDL prints:

% CLASS2 is not a superclass of object class CLASS1.
% Execution halted at:  $MAIN$
Building IDL Applications Method Overriding



488 Chapter 20: Object Basics
Object Examples

We have included a number of examples of object-oriented programming as part of
the IDL distribution. Many of the examples used in this volume are included —
sometimes in expanded form — in the examples/visual subdirectory of the IDL
distribution. By default, this directory is part of IDL’s path; if you have not changed
your path, you will be able to run the examples as described here. See !PATH in the
IDL Reference Guide for information on IDL's path.
Object Examples Building IDL Applications



Part V: Creating
GUIs





Chapter 21:

Using the
IDL GUIBuilder

The following topics are covered in this chapter:
Overview . . . . . . . . . . . . . . . . . . . . . . . . . .  492
Starting the IDL GUIBuilder  . . . . . . . . . .  494
Creating an Example Application . . . . . . .  496
IDL GUIBuilder Tools  . . . . . . . . . . . . . . .  507
Widget Operations  . . . . . . . . . . . . . . . . . .  520
Generating Files  . . . . . . . . . . . . . . . . . . . .  523
IDL GUIBuilder Examples . . . . . . . . . . . .  525
Widget Properties  . . . . . . . . . . . . . . . . . . .  539
Common Widget Properties  . . . . . . . . . . .  540

Base Widget Properties  . . . . . . . . . . . . . . . 546
Button Widget Properties . . . . . . . . . . . . . . 557
Text Widget Properties . . . . . . . . . . . . . . . . 561
Label Widget Properties  . . . . . . . . . . . . . . 566
Slider Widget Properties  . . . . . . . . . . . . . . 568
Droplist Widget Properties  . . . . . . . . . . . . 570
Listbox Widget Properties . . . . . . . . . . . . . 572
Draw Widget Properties . . . . . . . . . . . . . . . 575
Table Widget Properties . . . . . . . . . . . . . . . 581
Building IDL Applications 491



492 Chapter 21: Using the IDL GUIBuilder
Overview

The IDL GUIBuilder is part of the IDLDE for Windows. The IDL GUIBuilder
supplies you with a way to interactively create user interfaces and then generate the
IDL source code that defines that interface and contains the event-handling routine
place holders.

Note
The IDL GUIBuilder is supported on Windows only. However, the code it
generates is portable and runs on all IDL supported platforms. Since applications
built with IDL GUIBuilder may require functionality added in the current release,
generated code only runs on the version of IDL you generated the code on or
greater.

The IDL GUIBuilder has several tools that simplify application development. These
tools allow you to create the widgets that make up user interfaces, define the behavior
of those widgets, define menus, and create and edit color bitmaps for use in buttons.

Note
When using code generated by the IDL GUIBuilder on other non-Windows
platforms, more consistent results are obtained by using a row or column layout for
your bases instead of a bulletin board layout. By using a row or column layout,
problems caused by differences in the default spacing and decorations (e.g.,
beveling) of widgets on each platform can be avoided

These are the basic steps you will follow when building an application interface using
the IDL GUIBuilder:

1. Interactively design and create a user interface using the components, or
widgets, supplied in the IDL GUIBuilder. Widgets are simple graphical objects
supported by IDL, such as sliders or buttons.

2. Set attributes for each widget. The attributes control the display, initial state,
and behavior of the widget.

3. Set event properties for each widget. Each widget has a set of events to which
it can respond. When you design and create an application, it is up to you to
decide if and how a widget will respond to the events it can generate. The first
step to having a widget respond to an event is to supply an event procedure
name for that event.
Overview Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 493
4. Save the interface design to an IDL resource file, *.prc file, and generate the
portable IDL source code files. There are two types of generated IDL source
code: widget definition code (*.pro files) and event-handling code
(*_eventcb.pro files).

5. Modify the generated *_eventcb.pro event-handling code file using the
IDLDE, then compile and run the code. This code can run on any IDL-
supported platform.

The *_eventcb.pro file contains place holders for all of the event procedures you
defined for the widgets, and you complete the file by filling in the necessary event
callback routines for each procedure.

Warning
Once you have generated the widget definition code (*.pro files), you should not
modify this file manually. If you decide to change your interface definition, you
will need to regenerate the interface code, and will therefore overwrite that *.pro
file. Any new event handling code will not be overwritten but will instead be
appended.

For information about IDL widgets, and how to create user interfaces
programmatically (without the IDL GUIBuilder), see Chapter 22, “Widgets”.
Building IDL Applications Overview



494 Chapter 21: Using the IDL GUIBuilder
Starting the IDL GUIBuilder

To open a new IDL GUIBuilder window, do one of the following:

• Select File → New → GUI from the IDLDE menu.

• Click the “New GUI” button on the IDLDE toolbar.

Each of these actions opens a new IDL GUIBuilder window and displays the IDL
GUIBuilder toolbar. The IDL GUIBuilder window contains a top-level base widget,
as shown in the following figure. This top-level base holds all of the widgets for an
individual interface; it is the top-level parent in the widget hierarchy being created.

Figure 21-1: IDLDE with IDL GUIBuilder Window
Starting the IDL GUIBuilder Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 495
Opening Existing Interface Definitions

To open an existing interface design in the IDL GUIBuilder:

1. Do one of the following to launch the Open dialog:

• Select File → Open from the IDLDE menu.

• Click on the “Open” button on the IDLDE toolbar.

2. In the Open dialog, select the appropriate *.prc file, and click Open.

The *.prc portable resource file contains the widget definitions that make up the
widget hierarchy and define your interface design. When you click Open, the existing
definition is displayed in an IDL GUIBuilder window. You can modify the interface
then save it, and you can generate new IDL source code for the modified definition.
Building IDL Applications Starting the IDL GUIBuilder



496 Chapter 21: Using the IDL GUIBuilder
Creating an Example Application

The following example takes you through the process of creating your first
application with the IDL GUIBuilder and the IDLDE. You will create the user
interface and write the event callback routines.

This simple example application contains a menu and a draw widget. When
complete, the running application allows the user to open and display a graphics file
in PNG format, change the color table for the image display, and perform smooth
operations on the displayed image.

This example introduces you to some of the basic procedures you will use to create
applications with the IDL GUIBuilder; it shows you how to define menus, create
widgets, set widget properties, and write IDL code to handle events.

Defining Menus for the Top-level Base

To define the menu, follow these steps:

1. Open a new IDL GUIBuilder window by selecting File → New → GUI from
the IDLDE menu, or click the “New GUI” button on the IDLDE toolbar.

2. Drag out the window then the top-level base to a reasonable size for displaying
an image. For example, drag the base out so that it has an X Size attribute
value of 500 and a Y Size attribute value of 400. To view the attribute values,
right-click on the base, and choose Properties from menu. In the Properties
dialog, scroll down to view the X Size and Y Size attribute values.

3. Right-click on the top-level base in the IDL GUIBuilder window, then choose
Edit Menu. This opens the Menu Editor.

4. In the Menu Editor Menu Caption field, enter “File” and click Insert to set the
entered value and add a new line after the currently selected line. The new line
becomes the selected line.

5. To define the File menu items, do the following:

A. With the new line selected, click on the right arrow in the Menu Editor,
which indents the line and makes it a menu item.

B. Click in the Menu Caption field and enter “Open...”.

C. Click in the Event Procedure field and enter “OpenFile”. The OpenFile
routine will be called when the user selects this menu.
Creating an Example Application Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 497
D. To create a separator after the Open menu, click the line button at the right
side of the dialog (above the arrow buttons).

E. To set the values and move to a new line, click Insert.

F. In the Menu Caption field, enter “Exit”.

G. In the Event Procedure field, enter “OnExit”.

H. To set the values and move to a new line, click Insert.

6. To define the Tools menu and its one item, do the following:

A. With the new line selected, click the left arrow to make the line a top-level
menu.

B. In the Menu Caption field, enter “Tools”, then click Insert.

C. Click the right arrow to make the new line a menu item.

D. In the Menu Caption field, enter “Load Color Table”.

E. In the Event Procedure field, enter “OnColor”.

F. To set the values and move to a new line, click Insert.

7. To define the Analyze menu and its one menu item, do the following:

A. With the new line selected, click the left arrow to make the line a top-level
menu.

B. In the Menu Caption field, type “Analyze”, then press Enter.

C. Click the right arrow to make the new line a menu item.

D. In the Menu Caption field, enter “Smooth”.

E. In the Event Procedure field, enter “DoSmooth”.
Building IDL Applications Creating an Example Application



498 Chapter 21: Using the IDL GUIBuilder
Your entries should look like those shown in the following figure.

8. Save your menu definitions by clicking OK in the Menu Editor.

Note
For more information about using the Menu Editor, see “Using the Menu Editor” on
page 514.

9. At this time you can click on the menus to test them. Your interface should
look similar to the one in the figure below.

10. Select File → Save from the IDLDE menu, which opens the “Save As” dialog.

11. In the “Save As” dialog, select a location, enter “example.prc” in the File name
field, and click Save. This writes the portable resource code to the specified
file.

Figure 21-2: Menu Editor Dialog with Example Menus
Creating an Example Application Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 499
Creating a Draw Widget

To create a draw area that will display PNG image files, follow these steps:

1. Click on the Draw Widget tool button, then drag out an area that fills the top-
level base display area. Leave a small margin around the edge of the draw area
when you drag it out.

2. Right click on the draw area, and choose Properties to open the Properties
dialog for the draw area.

3. In the Properties dialog, click the push pin button so the dialog will stay open
and on top.

4. In the Properties dialog, change the draw widget Name attribute value to
“Draw”.

Figure 21-3: IDL GUIBuilder with Example Application
Building IDL Applications Creating an Example Application



500 Chapter 21: Using the IDL GUIBuilder
Later, you will write code to handle the display of the image in this draw area
widget. Renaming the widget now will make it easier to write the code later;
the “Draw” name is easy to remember and to type.

Note
The Name attribute must be unique to the widget hierarchy.

5. In the IDL GUIBuilder window, click on the top-level base widget to select it.
When you do so, the Properties dialog will update and display the attributes for
this base widget.

6. In the Properties dialog, change the base widget Component Sizing attribute to
Default. This sizes the base to the draw widget size you created.

When you first dragged out the size of the base, the Component Sizing
attribute changed from Default to Explicit—you explicitly sized the widget.
Now that the base widget contains items, you can return it to Default sizing,
and IDL will handle the sizing of this top-level base.

7. In the Properties dialog, change the base widget Layout attribute to Column.

8. Select File → Save to save your new modifications to the example.prc file.
The application should look like the one shown in the following figure.
Creating an Example Application Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 501
Running the Application in Test Mode

You can run the application in test mode, which allows you to test the display of
widgets and menus. To run your application in test mode, do one of the following:

• Select Run → Test GUI from the IDLDE menu.

• Press Control+t.

Both these actions display the interface as it will look when it runs. You can click on
the menus, but there is no active event handling in test mode.

To exit test mode, do one of the following:

• Press the Esc key.

• Click the X in the upper-right corner of the test application window.

Figure 21-4: Complete Example Application
Building IDL Applications Creating an Example Application



502 Chapter 21: Using the IDL GUIBuilder
Generating the IDL Code

To generate the code for the example application, follow these steps:

1. Select File → Generate .pro. In the “Save As” dialog, find the location where
you want the files saved, enter “example.pro” in the File name field, and click
Save. This generates an example.pro widget definition file and an
example_eventcb.pro event-handling file.

The example.pro file contains the widget definition code, and you should
never modify this file. If you decide later to change your interface, you will
need to regenerate this interface code, and thus overwrite the widget code file.

The example_eventcb.pro contains place holders for all the event
procedures you defined in the IDL GUIBuilder Menu Editor and Properties
dialog. You must complete these event procedures by filling in event callback
routines. If you generate code after you have modified this file, any new event
handling code will not be overwritten but will instead be appended. For
information on ways to handle regenerating the *_eventcb.pro file, see
“Notes on Generating Code a Second Time” on page 524.

For more information on interface definitions and generated code, see
“Generating Files” on page 523.

Note
You should modify only the generated event-handling file (*_eventcb.pro); you
should never modify the generated interface code (the *.pro file).

Handling the Open File Event

You can now modify the generated example_eventcb.pro file to handle the
events for the application. First, you will modify the OpenFile routine.

When the user selects Open from the File menu of the example application, the
appropriate event structure is sent, and the OpenFile routine handles the event. For
this application, the Open menu item will launch an Open dialog to allow the user to
choose a PNG file, and then the routine will check the selected file’s type, read the
image, and display it in the draw area.
Creating an Example Application Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 503
To open the file and add the code to handle the OpenFile event, follow these steps:

1. Select File → Open from the IDLDE menu. In the “Open” dialog, select the
example_eventcb.pro file, and click Open. This file contains the event
handling routine place holders, which you will now complete.

2. In the example_eventcb.pro file, locate the OpenFile procedure, which
looks like this:

pro OpenFile, Event

end

Tip
To easily find the OpenFile routine, select OpenFile from the Functions/Procedures
drop-down list on the IDLDE toolbar.

3. Add the following code between the PRO and END statements to handle the
event:

; If there is a file, draw it to the draw widget.
sFile = DIALOG_PICKFILE(FILTER='*.png')
IF(sFile NE "")THEN BEGIN

; Find the draw widget, which is named Draw.
wDraw = WIDGET_INFO(Event.top, FIND_BY_UNAME='Draw');
; Make sure something was found.
IF(wDraw GT 0)THEN BEGIN

; Make the draw widget the current, active window.
WIDGET_CONTROL, wDraw, GET_VALUE=idDraw
WSET,idDraw
; Read in the image.
im = READ_PNG(sFile, r, g, b)
; If TrueColor image, quantize image to pseudo-color:
IF (SIZE(im, /N_DIM) EQ 3) THEN $

im = COLOR_QUAN(im, 1, r, g, b)
; Size the image to fill the draw area.
im = CONGRID(im, !D.X_SIZE, !D.Y_SIZE)
; Handle TrueColor displays:
DEVICE, DECOMPOSED=0
; Load color table, if one exists:
IF (N_ELEMENTS(r) GT 0) THEN TVLCT, r, g, b
; Display the image.
TV, im
; Save the image in the uvalue of the top-level base.
WIDGET_CONTROL, Event.top, SET_UVALUE=im, /NO_COPY

ENDIF
ENDIF
Building IDL Applications Creating an Example Application



504 Chapter 21: Using the IDL GUIBuilder
Note
In the added code, you used the FIND_BY_UNAME keyword to find the draw
widget using its name attribute. In this example, the widget name, “Draw”, is the
one you gave the widget in the IDL GUIBuilder Properties dialog. The widget name
is case-sensitive.

Handling the Exit Event

To add the code that causes the example application to close when the user chooses
Exit from the File menu, follow these steps:

1. Locate the OnExit routine place holder, which looks like this:

pro OnExit, Event

end

2. add the following statement between the PRO and END statements to handle
the destruction of the application:

WIDGET_CONTROL, Event.top, /DESTROY

Handling the Load Color Table Event

To add the code that causes the example application to open the IDL color table
dialog when the user chooses Load Color Table from the Tools menu, follow these
steps:

1. Locate the OnColor routine place holder, which looks like this:

pro OnColor, Event

end

2. Add the following code between the PRO and END statements:

XLOADCT, /BLOCK
; Find the draw widget, which is named Draw:
wDraw = WIDGET_INFO(Event.top, FIND_BY_UNAME='Draw')
IF(wDraw GT 0) THEN BEGIN

; Make the draw widget the current, active window:
WIDGET_CONTROL, wDraw, GET_VALUE=idDraw
WSET, idDraw
WIDGET_CONTROL,Event.top, GET_UVALUE=im, /NO_COPY
; Make sure the image exists:
IF (N_ELEMENTS(im) NE 0) THEN BEGIN
; Display the image:
Creating an Example Application Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 505
TV, im
; Save the image in the uvalue of the top-level base:
WIDGET_CONTROL, Event.top, SET_UVALUE=im, /NO_COPY

ENDIF
ENDIF

This procedure opens a dialog from which the user can select from a set of predefined
color tables. When the user selects a color table, it is loaded and the displayed image
changes accordingly.

Handling the Smooth Event

When the user selects Smooth from the Analyze menu, a smooth operation is
performed on the displayed image. The smooth operation displays a smoothed image
with a boxcar average of the specified width, which in the example code is 5.

To add the callback routines to handle the smooth operation, follow these steps:

1. Locate the DoSmooth routine place holder, which looks like this:

pro DoSmooth, Event

end

2. Add the following code between the PRO and END statements to handle the
smooth operation:

; Get the image stored in the uvalue of the top-level-base.
WIDGET_CONTROL, Event.top, GET_UVALUE=image, /NO_COPY
; Make sure the image exists.
IF(N_ELEMENTS(image) GT 0)THEN BEGIN

; Smooth the image.
image = SMOOTH(image, 5)
; Display the smoothed image.
TV, image
; Place the new image in the uvalue of the button widget.
WIDGET_CONTROL, Event.top, SET_UVALUE=image, /NO_COPY

ENDIF

3. Select File → Save, to save all your changes to the example_eventcb.pro
file.

Compiling and Running the Example Application

To compile and run your example application, type example at the IDL> command
prompt. The following figure shows the example application and the IDL color table
dialog.
Building IDL Applications Creating an Example Application



506 Chapter 21: Using the IDL GUIBuilder
In the running application, you can open and display a PNG file. Then, you can open
the XLOADCT dialog and change the color table used in displaying the image, or
you can perform the smooth procedure on the image.

Figure 21-5: Running Example Application and XLOADCT Dialog
Creating an Example Application Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 507
IDL GUIBuilder Tools

You will use the following tools to design and construct a graphical interface using
the IDL GUIBuilder:

• The IDL GUIBuilder Toolbar, which you use to create the widgets that make
up your interface. See “Using the IDL GUIBuilder Toolbar” on page 508 and
“Widget Operations” on page 520.

• The Widget Properties dialog, which you use to set widget attributes and event
properties. See “Using the Properties Dialog” on page 511 and “Widget
Properties” on page 539.

• The Widget Browser, which you can use to see the widget hierarchy and to
modify certain aspects of the widgets in your application. See “Using the
Widget Browser” on page 513.

• The Menu Editor, which you use to define menus to top-level bases and
buttons. See “Using the Menu Editor” on page 514.

• The Bitmap Editor, which you use to create or modify bitmap images to be
displayed on button widgets. See “Using the Bitmap Editor” on page 517.

• The IDLDE to modify, compile, and run the generated code (see Chapter 3,
“The IDL for Windows Interface” in the Using IDL manual.
Building IDL Applications IDL GUIBuilder Tools



508 Chapter 21: Using the IDL GUIBuilder
Using the IDL GUIBuilder Toolbar

The IDL GUIBuilder has its own toolbar in the IDE, which you use to create the
widgets for your user interface. The following figure shows the toolbar.

These are the widget types you can create using the IDL GUIBuilder toolbar:

Figure 21-6: IDL GUIBuilder Toolbar

Widget Description

Base Creates a container for a group of widgets within a top-level base
container. A top-level base is contained in the IDL GUIBuilder
window, and you build your interface in it. Use base widgets
within the top-level base to set up the widget hierarchy, layout,
and to organize the application. For example, you can use a base
widget to group a set of buttons. For information on base
properties, see “Base Widget Properties” on page 546.

Button Creates a push button. The easiest way to allow a user to interact
with your application is through a button click. You can have
button widgets display labels, menus, or bitmaps. For information
on button properties, see “Button Widget Properties” on
page 557.

Table 21-1: Widget Types

Select Cursor

Base Button Radio Button

Checkbox

Text

Label

Vertical Slider ListboxDroplist Draw Area

Table

Horizontal Slider
IDL GUIBuilder Tools Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 509
Radio Button Creates a toggle button that is always grouped within a base
container. Use radio buttons to present a set of choices from
which the user can pick only one. For information on radio button
properties, see “Button Widget Properties” on page 557.

Checkbox Creates a checkbox, which you can use either as a single toggle
button to indicate a particular state is on or off or as a list of
choices from which the user can select none to all choices.
Checkboxes are created within a base container. For information
on checkbox properties, see “Button Widget Properties” on
page 557.

Text Creates a text widget. Use text widgets to get input from users or
to display multiple lines of text. For information on text widget
properties, see “Text Widget Properties” on page 561.

Label Creates a label. Use label widgets to identify areas of your
application or to label widgets that do not have their own label
property. Use labels when you have only a single line of text and
you do not want the user to be able to change the text. For
information on label widget properties, see “Label Widget
Properties” on page 566.

Horizontal
and Vertical
Sliders

Creates a slider with a horizontal or vertical layout. Use slider
widgets to allow the user to control program input, such as adjust
the speed of movement for a rotating image. For information on
slider properties, see “Slider Widget Properties” on page 568.

Droplist Creates a droplist widget, which you can use to present a
scrollable list of items for the user to select from. The droplist is
an effective way to present a lot of choices without using too
much interface space. For information on droplist properties, see
“Droplist Widget Properties” on page 570.

Listbox Creates a list widget, which you can use to present a scrollable
list of items for the user to select from. For information on listbox
properties, see “Listbox Widget Properties” on page 572.

Widget Description

Table 21-1: Widget Types
Building IDL Applications IDL GUIBuilder Tools



510 Chapter 21: Using the IDL GUIBuilder
Note
The Select Cursor button returns the cursor to its standard state, and it indicates that
the cursor is in that state. After you click on another button and create the selected
widget, the cursor returns to the selection state.

Creating Widgets

All widgets for a user interface must be descendents of a top-level base; in the IDL
GUIBuilder window, all widgets must be contained in a top-level base widget. When
you open an IDL GUIBuilder window, it contains a top-level base. You can add base
widgets to that top-level widget to form a widget hierarchy. The added bases can act
as containers for groups of widgets.

To create a widget, do one of the following:

• Click on the appropriate button on the toolbar, then drag out an area within the
top-level base widget. When you release the mouse button, a widget the size of
the dragged-out area is created.

• Click on the appropriate button on the toolbar, then click within the top-level
base area. This creates a widget of the default size.

After you add widgets to a top-level base, you can resize, move, and delete them, and
you can change their parent base. You can also set properties for each widget. For
information on how to operate on widgets, see “Widget Operations” on page 520, and
for information on setting properties, see “Using the Properties Dialog” on page 511.

Draw Area Creates a draw area, which you can use to display graphics in
your application. The draw area can display IDL Direct Graphics
or IDL Object Graphics, depending on how you set its properties.
For information on the draw area properties, see “Draw Widget
Properties” on page 575.

Table Creates a table widget, which you can use to display data in a row
and column format. You can allow users to edit the contents of
the table. For information on the table widget properties, see
“Table Widget Properties” on page 581.

Widget Description

Table 21-1: Widget Types
IDL GUIBuilder Tools Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 511
Using the Properties Dialog

For each widget, you can define attribute and event procedure properties. A widget’s
attributes define how it will display on the screen and its basic behaviors. The
attributes you can set for a selected widget are displayed on the Attributes tab of the
Properties dialog. These attributes are initially set to default values.

Event procedures are the predefined set of events a widget can recognize. When you
write an application, you decide if and how the widget will respond to each of the
possible events. The events that a selected widget recognizes are displayed on the
Events tab of the Properties dialog. The event values are initially undefined. Supply
event routine names for only those events to which you want the application to
respond.

Opening the Properties dialog

To open the Properties dialog for a widget, do one of the following:

• Right-click on the widget in the IDL GUIBuilder window, and choose
Properties from the menu.

• Select the widget, and choose Properties from the Edit menu.

These actions open a Properties dialog similar to the one shown in the following
figure.

Figure 21-7: Properties Dialog for a Slider Widget
Building IDL Applications IDL GUIBuilder Tools



512 Chapter 21: Using the IDL GUIBuilder
The status area at the bottom of the Properties dialog contains a description of the
currently selected attribute or event. In addition, for each property that maps directly
to an IDL keyword, there is a tool-tip that provides the name of the IDL keyword.

To display a tool-tip, place the cursor over the property name. The tool-tips are
displayed only for properties that map to IDL keywords.

Note
If you have multiple widgets selected in the IDL GUIBuilder window, the
Properties dialog displays the properties for the primary selection, which is
indicated by the darker, filled-in sizing handles around the widget. When you select
multiple widgets, only one is marked as the primary selection.

To keep the Properties dialog on top, click the push pin button.

The Properties dialog will close as soon as it loses focus, unless you click the push
pin button. If you click the push pin button, the Properties dialog stays on top and
updates to reflect the properties of the currently selected widget.

To close the Properties dialog when the push pin is being used, do one of the
following:

• Click the push pin again, and the dialog will close when it loses focus.

• Press Escape while the dialog has focus.

• Click the X in the upper right corner of the dialog.

Any changes you make to values in the Properties dialog are automatic; you will see
the results of all visual changes immediately. For example, any changes you make to
the alignment or column setting will change the layout position of the widget
immediately.

All widgets share a common set of properties, and each widget has its own specific
properties. These properties are arranged in the following order on the Attributes tab
of the Properties dialog:

• The Name attribute

• An alphabetical list of common and widget-specific properties, combined

On the Events tab of the Properties dialog, the properties are displayed in alphabetical
order with common and widget-specific events combined.

For information on the properties you can set for each widget, see “Widget
Properties” on page 539.
IDL GUIBuilder Tools Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 513
Entering Multiple Strings for a Property

There are several widget properties that you can set to multiple string values. The
attribute’s Value field contains a popup edit control in which you can enter multiple
strings.

To enter more than one string in the edit control, do one of the following:

• Type in a string, then press Control+Enter at the end of each line.

• Type in a string, then press Control+j at the end of each line.

These actions move you to the next line. When you have entered the necessary string,
press Enter to set the values.

Using the Widget Browser

The Widget Browser of the IDL GUIBuilder is a dialog window that presents the
current GUI in a tree control. This presents the user with a different view into the
GUI they are designing.

To start the Widget Browser, right-click on any component in an IDL GUIBuilder
window, then choose Browse from the menu. This opens the Widget Browser, like
the one shown in the following figure.

The Widget Browser is helpful when you want to see your widget hierarchy and
when you need to operate on overlapping widgets in your interface layout, which can
happen when you design an interface to show or hide widgets on specific events. For
an example that uses the Widget Browser for this purpose, see “Controlling Widget
Display” on page 534.

Figure 21-8: Widget Browser
Building IDL Applications IDL GUIBuilder Tools



514 Chapter 21: Using the IDL GUIBuilder
Note
In the Widget Browser, there is no indication of defined menus.

You can expand the widget tree by clicking on the plus sign, or collapse it by clicking
on the minus sign.

When you select a widget in the hierarchy by clicking on it, the widget is selected in
the IDL GUIBuilder window, and the Properties dialog updates to display the
selected widget’s properties.

Right-click on a component to display a context menu from which you can cut, copy,
paste, or delete the widget. From the context menu, you can also open the Properties
dialog and the Menu Editor, when appropriate. To delete a widget from the Widget
Browser, use the context menu, or select a widget and press the Delete key.

To change a widget’s Name attribute in the Widget Browser, select the widget name
with two single clicks on the name. This changes the name into an editable text box in
which you can enter the new name. The Name attribute must be unique to the widget
hierarchy.

For more information on other ways to operate on widgets, see “Widget Operations”
on page 520.

Using the Menu Editor

You can add menus to top-level bases or to buttons that have the Type attribute set to
Menu. To define menus for your interface, use the Menu Editor, which is shown in
the following figure with defined menus. This dialog allows you to define menus,
menu items, submenu titles, and submenus, and all their associated event procedures.
IDL GUIBuilder Tools Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 515
For instructions on how to define the menus shown in the following figure, see
“Defining Menus for the Top-level Base” on page 496.

Adding Menus to Top-Level Bases

To define basic menus, menu items, submenu titles, submenus, and their associated
event procedures to top-level bases, follow these general steps:

1. Open the Menu Editor by doing one of the following:

• Select the top-level base and select Edit → Menu from the IDLDE menu.

• Right-click on the top-level base, then choose Edit Menu.

2. To define a top-level menu in the Menu Editor, enter a Menu Caption, and
click Insert. When you are defining menus for a top-level base, the top-level
menus are aligned along the left edge of the menu list, and the indentation
indicates the nesting in the menu.

Note
The Menu Caption is the name that appears on the menubar. If you are defining a
top-level menu for a base, you do not need to supply a value in the Event Procedure
field. On button menus, however, where the button’s Label attribute acts as the top-
level menu, the first level of menus in the editor serve as menu items, and thus
require a value in the Event Procedure field.

Figure 21-9: Menu Editor Dialog
Building IDL Applications IDL GUIBuilder Tools



516 Chapter 21: Using the IDL GUIBuilder
3. To define a menu item on a new line in the editor, click the right arrow, enter a
Menu Caption and its associated event procedure, then click Insert. The Menu
Caption is the name you want to appear on the menu. The Event Procedure is
the name of the routine that will be called when the menu item is selected.

Note
For top-level bases, you must indent a line to make it a menu item and enable the
Event Procedure field.

4. To define a submenu title, enter the Menu Caption, and click Insert. It is not
necessary to define an Event Procedure for a submenu title.

5. To define submenus to a submenu title, enter the Menu Caption and the Event
Procedure, indent the item another level by using the right arrow, and click
Insert. Enter the submenus you want at this level of indentation.

6. To define another top-level menu or menu item, enter the information, click
the left arrow until the indentation is appropriate, and click Insert.

7. To define a separator, select a blank line, or select the line you want the
separator after, then click the separator button (which has a line on it and is
above the arrow buttons).

8. To save your defined menus, Click OK in the Menu Editor. When you do so,
the menu items will appear on the top-level base. To test the display of the
menus, click on them.

Note
Under Microsoft Windows, including the ampersand character (&) in the Menu
Caption causes the window manager to underline the character following the
ampersand, which is the keyboard accelerator. This functionality is supported in the
Menu Editor. If you are designing an application to run on other platforms,
however, avoid the use of the ampersand in the Menu Caption.

• To move a menu item to a new position: Select the menu item, click the up or
down arrow on the right side of the dialog until the menu item is in the desired
position, then click OK.

• To add a menu item in the middle of existing menu items: Select the line you
want the new item to follow, then click Insert. This adds a new line, for which
you can enter a Menu Caption and Event Procedure.
IDL GUIBuilder Tools Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 517
• To make a menu item display disabled initially: Click the Enabled checkbox
(to uncheck it). All menu items are enabled by default.

• To delete a menu item: Select the item, then click Delete.

• To delete a menu: Delete each contained menu item, then delete the top-level
menu.

Adding Menus to Buttons

You can also create buttons that contain menus. To add a menu to a button, follow
these basic steps:

1. Click on the Button widget tool on the toolbar, then click on the top-level base
area. This creates a button of the default size.

2. Right-click on the button and choose Properties to open the Properties dialog.

3. In the Properties dialog, change the value of the Type attribute to Menu.

4. Right-click on the button, then choose Edit Menu to open the Menu Editor.
You can define the menu items and submenus with the Menu Editor, using the
general steps described in “Using the Menu Editor” on page 514.

Note
For buttons, the Label attribute acts as the top-level menu, and the first level of
menus in the Menu Editor serve as menu items. Therefore, the first level requires a
value in the Event Procedures field (unlike top-level menu items for bases).

5. After you have defined all the necessary menus, click OK. When you do so,
the menus are saved, and the button Label attribute is displayed as the top-level
menu.

To view menus on buttons, do one of the following:

• Immediately after creating the menu (after clicking OK in the Menu Editor),
click on the button, and the button menus will be displayed.

• At any other time, right-click on the button, and then choose Show Menu.

Using the Bitmap Editor

Use the Bitmap Editor to create 16 color bitmaps to be displayed on push buttons.
The Bitmap Editor can read and write bitmap files (*.bmp). Using the editor, you can
create your own bitmaps, or you can open existing bitmap files and modify them.
Building IDL Applications IDL GUIBuilder Tools



518 Chapter 21: Using the IDL GUIBuilder
IDL supplies a set of bitmap files you can use in the buttons of your applications. The
files are always available for loading. The bitmaps are located in the following
directory:

IDL_DIR\resource\bitmaps

Placing a Color Bitmap on a Button

To display a bitmap on a button, follow these steps:

1. Right-click on the button widget, and choose Properties from the menu,
which opens the Properties dialog for this button.

2. In the Type field, select Bitmap from the droplist.

3. In the Properties dialog, click on the arrow to the right of the Bitmap attribute,
and do one of the following:

• To place an existing bitmap on the button: Choose Select Bitmap, and
select a bitmap file from the Open dialog. Note that when Bitmap type is
selected, the Label attribute value changes to Bitmap.

• To edit an existing bitmap and place it on the button: Choose Edit Bitmap,
then select the bitmap file from the Open dialog. This opens the bitmap in
the Bitmap Editor. The bitmap is displayed on the button when you save
the file.

• To create a new bitmap and place it on a button: Choose New Bitmap. This
opens the Bitmap Editor, which you can use to create the new bitmap.
When you save the *.bmp file, it is placed on the button.

When you complete one of these processes, the filename of the selected bitmap
appears in the Bitmap field of the Properties dialog, and the bitmap is
displayed on the button.

Note
For 16- and 256-color bitmaps, IDL uses the color of the pixel in the lower left
corner as the transparent color. All pixels of this color become transparent, allowing
the button color to show through. This allows you to use bitmaps that are not
rectangular. If you have a rectangular bitmap that you want to use as a button label,
you must either draw a border of a different color around the bitmap or save the
bitmap as 24-bit (TrueColor). If your bitmap also contains text, make sure the
border you draw is a different color than the text, otherwise the text color will
become transparent.
IDL GUIBuilder Tools Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 519
Using the Bitmap Editor Tools

The Bitmap Editor tools allow you to select from the color palette, and then use the
Pencil (pixel fill), the Flood fill (fill clear area), or the Eraser (clear or color areas).
The Bitmap Editor tools are shown in the following figure.

You can select a color by clicking on it in the color selection tool, or you can select
your primary colors, the left-button and right-button colors, and then click on a tool
and draw on the bitmap canvas. You can change the primary color selections at any
time.

• To select the left mouse button color: Left-click on the color in the color
selection area.

• To select a right mouse button color: Right-click on the color in the color
selection area.

• To use the left color: With a tool selected, click or press and drag the right
mouse button on the bitmap canvas.

• To use the right color: With a tool selected, click or press and drag the left
mouse button on the bitmap canvas.

• To change the size of the bitmap: Drag the bitmap canvas to the desired size.

Figure 21-10: Bitmap Editor Tools

Selection Cursor

Pencil (Pixel Fill) Flood Fill

Eraser

Color Selection Area

Left-button Color

Right-button Color
Building IDL Applications IDL GUIBuilder Tools



520 Chapter 21: Using the IDL GUIBuilder
Widget Operations

The IDL GUIBuilder allows you to operate on widgets in many ways. You can select,
deselect, move, cut, copy, paste, and delete widgets, and you can undo and redo
operations. This section describes the following:

• Selecting Widgets

• Moving and Resizing Widgets

• Cutting, Copying, and Pasting Widgets

• Deleting Widgets

• Undoing and Redoing Operations

Selecting Widgets

You can select a widget, then move it or resize it.

To select a widget, click on the widget.

To select more than one widget, do one of the following:

• Press Shift and click on each widget.

• Press Control and click on each widget. When you press Control, you can
change the selection state by clicking again on the widget; pressing Control
during selection allows you to toggle the selection state of a widget without
affecting the selection state of any other widget.

• Press the left mouse button and drag out an area in the top-level base that
includes the widgets you want to select. When you release the mouse button,
widgets in the selection box are selected.

When you select multiple widgets, there is always one primary selection. The
primary widget selection is indicated with the dark, filled-in selection handles. If you
open the Properties dialog with multiple widgets selected, the properties displayed
are those for the primary selection.

Note
When selecting multiple widgets, you can select only widgets that share the same
base widget as their parent.
Widget Operations Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 521
Moving and Resizing Widgets

You can move widgets around in their parent base by dragging the widget to a new
location or by using the arrow keys.

To move a widget to a new base, or to give a widget a new parent base within the
same top-level base, do one of the following:

• Press Alt and drag and drop the widget on the new parent base.

• Right-click on the widget, choose Cut from the menu, right-click on the new
base widget, and choose Paste from the menu.

To resize a widget, click on a sizing handle, and drag to the desired size. To size the
widget larger than its parent base, press Alt and drag to the desired size.

Cutting, Copying, and Pasting Widgets

You can cut, copy, and paste widgets within the same base or to another base in
another IDL GUIBuilder window, using the Edit menu items, toolbar buttons, or a
context menu (opened with a right-click on the widget).

To cut or copy a selected widget, or to paste a widget from the clipboard, do one of
the following:

• Choose the desired operation from the Edit menu, or from the IDLDE toolbar.

• Right-click on the widget and select the desired operation from the menu. If
you are pasting, right-click on the base widget you want to paste into.

• Select the widget and use standard windows keyboard shortcuts to cut, copy,
or paste the widget.

Note
All cut or copied items are placed on a local clipboard, not on the system clipboard.

Deleting Widgets

To delete a widget, do one of the following:

• Select the widget and choose Edit → Delete.

• Select the widget and press the Delete key.

• Right click on a widget and choose Delete from the menu.
Building IDL Applications Widget Operations



522 Chapter 21: Using the IDL GUIBuilder
Undoing and Redoing Operations

In the IDL GUIBuilder, you can undo or redo unlimited operations between save
procedures. If you save the resource file, the operations are cleared from memory.

To undo an operation, do one of the following:

• Select Edit → Undo.

• Click the “Undo” button on the IDLDE toolbar.

• Press Control+z.

To redo an operation, do one of the following:

• Select Edit → Redo.

• Click the “Redo” button on the IDLDE toolbar.

• Press Control+y.
Widget Operations Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 523
Generating Files

The IDL GUIBuilder generates the following two types of files:

• *.prc files that contain the resource definitions for the interface definition as
displayed in the IDL GUIBuilder.

• *.pro files that contain the generated IDL source code. The generated *.pro
files are portable across all IDL-supported platforms.

Generating Resource Files

The *.prc files contain the resource definitions for the graphical interface. You can
open *.prc files in the IDL GUIBuilder and modify the interface at anytime. Do not
attempt to modify this file directly.

To save a *.prc file for the first time, choose Save or Save As from the IDLDE File
menu. This opens the “Save As” dialog, which allows you to select a location and
indicate a file name for the *.prc file.

To have the .prc file generate code for a project, open the .prc file and do the
following for your platform:

• Windows: select File → Generate.

• Macintosh: select Project → Build.

• UNIX: select Project → Build.

Generating IDL Code

The IDL GUIBuilder can generate these two kinds of *.pro IDL source code files:

• Widget definition code (*.pro files).

• Event-handling code (*_eventcb.pro files).

To save both the widget code and the event handler *.pro files, select File →
Generate .pro from the IDLDE menu. This opens the “Save As” dialog, which you
can use to select a location and indicate a name for the widget code. The event code
file name is based on the name specified for the widget code. For example, if you
enter app1.pro in the File name field, the event code file will be named
app1_eventcb.pro.
Building IDL Applications Generating Files



524 Chapter 21: Using the IDL GUIBuilder
Note
Never modify the generated *.pro interface file. If you decide to modify the
application interface, use the IDL GUIBuilder, then regenerate the file. When you
regenerate the widget code, the file is overwritten.

Note
When you save both files, IDL puts the RESOLVE_ROUTINE procedure in the
generated widget code. The procedure contains the name of the related
*_eventcb.pro event-handler file so that it will be compiled and loaded with
when you run the widget code.

Notes on Generating Code a Second Time

When you modify an interface and save the *.prc file, it is overwritten, which
should not be a problem. If you decide to change your interface, however, you will
need to regenerate the widget code and thus overwrite the *.pro widget code file.

Note that if you regenerate either of the *.pro files, they are overwritten. When
writing code, you should modify only the generated event-handling file
(*_eventcb.pro). You should never modify the generated widget code (the *.pro
file). This allows you to change the interface and regenerate the definition code
without losing modifications in that file. This should simplify the procedures you
need to take to update or change an interface.

Because it is modular, the event-handler code is simple to modify after you change
the interface definitions. When you regenerate the IDL source code files, any new
event handler code is appended to the end of the file.
Generating Files Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 525
IDL GUIBuilder Examples

After you define your interface and generate IDL code using the IDL GUIBuilder,
you will write the code that controls the application’s behavior. You can modify the
code, compile it, and run it using the IDLDE.

Generally, you will be writing the event-handler callbacks for the procedures located
in the generated *_eventcb.pro file. While doing this, you might like to handle
initialization states, have multiple GUIs work together, add compound widgets, or
control widget display. For examples of how to handle these different types of events,
see the following sections:

• Understanding IDL GUIBuilder Event Handling Code

• Writing Event Callback Routines

• Handling Initialization Arguments

• Integrating Multiple Interfaces

• Adding Compound Widgets

• Controlling Widget Display

Understanding IDL GUIBuilder Event Handling Code

When using the IDL GUIBuilder, you assign event procedures to specific events
using the Events tab of the Properties dialog. The calling sequence for the events that
you set are added to the generated *_eventcb.pro event callback code.

The argument that is passed into the specified event routine depends on the type of
event being processed. Creation, realization, and destruction event routines are
usually passed the ID of the involved widget, and all other callback routines are
passed the appropriate IDL widget event structure.

It is a normal operation in applications to change the attributes of the interface when
certain events occur. One method used in handling events for IDL GUIBuilder
generated applications is the UNAME keyword, or the Name attribute, given to all
created widgets. (In a programmatically-created IDL application, this action is
handled using information stored in a widget component’s user value.)

When you create a widget in the IDL GUIBuilder, IDL gives it a name unique to the
widget hierarchy to which it belongs. You can rename the widget using the Name
attribute.
Building IDL Applications IDL GUIBuilder Examples



526 Chapter 21: Using the IDL GUIBuilder
In the generated code, this name is specified by the UNAME keyword. Because these
names are unique, you can use the WIDGET_INFO function with the
FIND_BY_UNAME keyword in your event callback routines to get the IDs of
widgets in the interface application.

Note
For information on properties, see “Using the Properties Dialog” on page 511, and
see “Widget Properties” on page 539.

Writing Event Callback Routines

This short example shows how basic event processing works in code generated by the
IDL GUIBuilder. The example demonstrates how to use the FIND_BY_UNAME
keyword to obtain the IDs of other widgets in the interface.

To create this simple example application, follow these steps:

1. Select File → New → GUI from the IDLDE menu. This opens a new IDL
GUIBuilder window.

2. In the IDL GUIBuilder window, right-click on the contained top-level base,
and choose Properties from the menu. This opens the Properties dialog.

3. In the open Properties dialog, click the push pin button to keep the dialog open
and on top.

4. On the Attributes tab of the Properties dialog, set the top-level base Layout
attribute to Column.

5. On the IDL GUIBuilder toolbar, click the Label Widget button, and click on
the top-level base area to add a label widget to the base.

6. With the label widget selected, set the following attributes in the Properties
dialog:

• In the Name field, enter “clock”.

• Set the Alignment attribute to Center.

• Set the Component Sizing attribute to Default.

• In the Text field, enter “No Time Currently Available”.

7. On the IDL GUIBuilder toolbar, click the Button Widget button.

8. Click on the top-level base area, which adds a button widget to the interface.
IDL GUIBuilder Examples Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 527
9. With the button selected, set the Label attribute to “Time”.

10. In the Properties dialog, click the Events tab and set OnButtonPress to
“OnPress”.

Your interface definition should look like the one shown in the following figure.

11. Select File → Save from the IDLDE menu, which opens the “Save As” dialog.

12. In the “Save As” dialog, select a location, enter “time.prc” in the File name
field, and click Save. This saves the interface definition to a resource file.

13. Select File → Generate .pro from the IDLDE menu. In the “Save As” dialog,
select the location, enter “time.pro” in the File name field, and click Save. This
saves the time.pro widget code file and the time_eventcb.pro event
callback code to the specified directory.

14. Select File → Open from the IDLDE menu. In the “Open” dialog, select the
time_eventcb.pro file and click Open.

Figure 21-11: Handling Events Example Application
Building IDL Applications IDL GUIBuilder Examples



528 Chapter 21: Using the IDL GUIBuilder
15. In the time_eventcb.pro file, locate the OnPress event procedure place
holder, which looks like this:

pro OnPress, Event

end

16. Add the following IDL code between the PRO and END statements to handle a
button press:

; Get the widget ID of the label widget.
Label = widget_info(Event.top, find_by_uname='clock')

; Set the value of the label widget to current time.
widget_control, Label, set_value=Systime(0)

The first command gets the ID of the label widget by searching the widget
hierarchy for a widget named “clock”. This is the name that you gave the label
widget in the IDL GUIBuilder Properties dialog. Once the ID is found, the
second command sets the value of the label widget to the current system time.

17. Select Run → Compile time_eventcb.pro to save and compile the file.

18. To execute the program, enter time at the IDL command prompt.

This compiles and runs the time.pro file. In the running application, you can press
the Time button to cause the current time to be displayed in the label.

Handling Initialization Arguments

You can provide runtime initialization information to the generated *.pro widget
code by modifying the *_eventcb.pro file. Keywords provided to the generated
widget interface procedure are passed to the post creation routines using the
_EXTRA keyword.

If a routine is defined with the _EXTRA keyword parameter, you can add
unrecognized keyword and value pairs, and the pairs are placed in an anonymous
structure. The name of each unrecognized keyword becomes a tag name, and each
value becomes the tag value.

You will use this feature most often when your application launches floating or
modal dialogs, but the functionality is always available.
IDL GUIBuilder Examples Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 529
For example, if you want to display a dialog at the creation of an application, you
would follow these basic steps:

1. Create an interface using the IDL GUIBuilder.

2. After creating the interface, open the Properties dialog for the top-level base
and set the PostCreation event for the top-level base widget to a routine name,
such as “OnCreate”.

3. Save the interface definition and generate the IDL source code.

4. In the generated *_eventcb.pro event code file, locate the “OnCreate”
routine place holder, which looks like this:

pro OnCreate, wWidget, _EXTRA=_VWBExtra_

end

5. To process a specific keyword in this post creation routine, declare the
keyword in the procedure statement and add the processing code to the
procedure.

For example, to process the DO_DIALOG keyword in the defined OnCreate
procedure, add the DO_DIALOG keyword to the procedure, and add the logic
to handle it to the event callback routine. The completed procedure should look
like this:

pro OnCreate, wWidget, DO_DIALOG=DO_DIALOG, _EXTRA=_VWBExtra_

; If DO_DIALOG is set, display a simple message box.
if( Keyword_Set(DO_DIALOG) )then $

status = Dialog_Message("On Dialog Set")

end

6. Save the file, then compile and generate the application. To show the dialog at
creation time, enter the following at the IDL command prompt:

<ProgramName>, /DO_DIALOG

Integrating Multiple Interfaces

You can create multiple interfaces with the IDL GUIBuilder then integrate them to
form the complete application hierarchy. This example shows you how to construct
two interfaces and integrate them.
Building IDL Applications IDL GUIBuilder Examples



530 Chapter 21: Using the IDL GUIBuilder
The first interface you will create is the main window, and it will consist of a simple
push button that will launch a modal dialog. The second interface you will create is
the modal dialog, and it will display a close button.

Creating the Main Window

To create the main window, follow these steps:

1. Select File → New → GUI from the IDLDE menu to open a new IDL
GUIBuilder window with a top-level base.

2. On the IDL GUIBuilder toolbar, click on the Button Widget button, then click
on the top-level base. This adds a button of the default size to the base. You
can place the button anywhere in the base.

3. Right-click on the newly created button, and choose Properties from the
context menu to open the Properties dialog.

4. In the Properties dialog, click the push pin button to keep the dialog open and
on top.

5. Set the button’s Label attribute to “Modal Dialog”.

6. Click on the Properties dialog Events tab, and set the OnButtonPress value to
“OnPress”.

7. Select File → Save. In the “Save As” dialog, select a location, enter
“maingui.prc” in the File name field, and click Save. This saves the interface
definition to an IDL resource file.

8. Select File → Generate .pro. In the “Save As” dialog, select a location, enter
“maingui.pro” in the File name field, and click Save. This saves the
maingui.pro widget code and the maingui_evnetcb.pro event-handler
code.

9. Select File → Open. In the “Open” dialog, select the
maingui_eventcb.pro file, and click Open.

10. In the maingui_eventcb.pro file, locate the OnPress event procedure place
holder, which looks like this:

pro OnPress, Event

end

11. Add the following code between the PRO and END statements:

modalgui, group_leader=Event.top
IDL GUIBuilder Examples Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 531
You will create the “modalgui” dialog in the next set of steps. Note that you set
the GROUP_LEADER keyword here because the modal dialog requires it.

12. Select Run → Compile maingui_eventcb.pro. This saves and compiles the
file.

Creating the Modal Dialog

To create the modal dialog, follow these steps:

1. Open a new IDL GUIBuilder window.

2. In the IDL GUIBuilder window, select the top-level base, and set the following
in the Properties dialog:

• Set the Modal attribute to True.

• In the Title field, enter “Modal Dialog”.

3. On the IDL GUIBuilder toolbar, click the button widget, then click on the top-
level base. This adds a button to the top-level base. Place it anywhere in the
base.

4. With the new button selected, set the Label attribute value to “OK”.

5. On the Events tab of the Properties dialog, set the OnButtonPress value to
“OnModalPress”.

6. Select File → Save. In the “Save As” dialog, select a location, enter
“modalgui.prc” in the File name field, and click Save. This saves the interface
definition to an IDL resource file.

7. Select File → Generate .pro. In the “Save As” dialog, select a location, enter
“modalgui.pro” in the File name field, and click Save. This saves the
modalgui.pro widget code file and the modalgui_eventcb.pro event
callback file.

8. Open the modalgui_eventcb.pro file and locate the OnModalPress
procedure place holder. Then add the following code between the PRO and
END statements so that the dialog closes when the button is pushed:

widget_control, Event.top, /destroy

9. Save and compile this file.
Building IDL Applications IDL GUIBuilder Examples



532 Chapter 21: Using the IDL GUIBuilder
Running the Example Application

Enter maingui at the IDL command prompt. This command runs the main window.
You can press the Modal Dialog button, and the modal dialog is displayed. When you
press the OK button on the modal dialog, the dialog exits.

Adding Compound Widgets

The IDL GUIBuilder tools do not allow you to add a compound widget directly to
your interface. You can, however, modify your event code to add a compound
widget.

To add a compound widget to an IDL GUIBuilder generated interface, follow these
basic steps:

1. Add the compound widget to the widget tree in a PostCreation event callback
procedure.

2. Handle the events generated by the compound widget in the Handle Event
callback function. Set this event function value for the base widget that will
contain the compound widget.

Adding a Compound Widget to an Interface

This example demonstrates how to add a compound widget to an application
constructed with the IDL GUIBuilder. The application contains a label and a
CW_FSLIDER compound widget. In the running application, the values generated
by CW_FSLIDER will be displayed in the label widget.

To create this application, follow these steps:

1. Select File → New → GUI from the IDLDE menu to open a new IDL
GUIBuilder window with a top-level base.

2. Right-click on the base and choose Properties to open the Properties dialog
for the top-level base.

3. In the Properties dialog, click the push pin button to keep the dialog on top.

4. In the Properties dialog of the top-level base, set the Layout attribute to
Column.

5. To add the label, click the Label Widget button on the toolbar, then click on
the top-level base. This creates a label widget of the default size.

6. With the label selected, set the following in the Properties dialog:

• In the Name value field, enter “label”.
IDL GUIBuilder Examples Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 533
• Set the Alignment attribute to Center.

• Set the Component Sizing attribute to Default.

• In the Text value field, enter “000.000”.

7. Click the Base Widget button on the toolbar, and click on the top-level base.
This adds a base to the top-level base.

8. With the new base widget selected, set the Component Sizing attribute to
Default.

9. In the Properties dialog, click on the Events tab and set the following base
widget event values:

• In the Handle Event Value field, enter “HandleEvent”. This is the name of
the function that will handle the compound widget events.

• In the PostCreation Value field, enter “AddCW”. This is the name of the
event routine that will create the compound widget.

10. Select File → Save. In the “Save As” dialog, select a location, enter
“compound.prc” in the File name field, and click Save. This saves the interface
definition to an IDL resource file.

11. Select File → Generate .pro. In the “Save As” dialog, enter “compound.pro”,
and click Save. This generates the compound.pro widget code file and the
compound_eventcb.pro event-handler file.

12. Select File → Open, and open the compound_eventcb.pro file.

13. In the compound_eventcb.pro file, locate the AddCW event routine place
holder, and insert the code to add the CW_FSLIDER compound widget to the
base widget. The routine should look like this:

pro AddCw, wWidget

idslide = CW_FSLIDER(wWidget, /SUPPRESS_VALUE)

end

14. Add the event callback routines to the generated HandleEvent function. The
function should look like this:

FUNCTION HandleEvent, Event

; Fslider event structure is an anonymous structure, so
; the following will return "" if it is from fslider.
Building IDL Applications IDL GUIBuilder Examples



534 Chapter 21: Using the IDL GUIBuilder
IF(TAG_NAMES(Event, /STRUCTURE_NAME) eq "")THEN BEGIN

; Get the id of the label widget using its name.
id = widget_info(Event.top, find_by_uname='label')

; Set the value of the label, to the value in the slider.
WIDGET_CONTROL, id, set_value= $

String(Event.value, format='(f5.2)')
RETURN,0
; Halt event processing here.

ENDIF

RETURN, Event

END

Note that the callback routine finds the label widget using the
FIND_BY_UNAME keyword with the name value you gave the widget in the
Properties dialog.

15. Select Run → Compile compound_eventcb.pro to save and compile the file.

Running the Example

To run the application, enter compound at the IDL command prompt. This complies
and runs the application. In the running application, move the CW_FSLIDER and the
value is placed in the label.

Controlling Widget Display

This example demonstrates how to use the IDL GUIBuilder to create an interface that
contains overlapping sub-bases containing different types of widgets. The example
shows how you can display and hide overlapping controls in an interface created in
the IDL GUIBuilder, and it incorporates using the Widget Browser. Note that this
example is slightly more complicated than the others.

This example constructs an interface with the following widgets:

• A droplist.

• A sub-base that contains two sub-bases:

• One sub-base containing a text widget.

• One sub-base containing a button.
IDL GUIBuilder Examples Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 535
The two contained sub-bases overlap and the visibility of each is controlled by the
value selected in the droplist. When users select an item in the droplist, one sub-base
is hidden and the other one is displayed.

Creating the Interface

To create this application interface, follow these steps:

1. Select New → GUI from the IDLDE File menu to open a new IDL
GUIBuilder window with a top-level base.

2. Right-click on the top-level base, and choose Properties from the menu. This
opens the Properties dialog.

3. In the Properties dialog, click the push pin button to keep the dialog open and
on top.

4. In the Properties dialog, set the Layout attribute to Column.

5. On the IDL GUIBuilder toolbar, click on the Droplist Widget button, then
click on the top-level base. This creates a droplist in the base area.

6. With the droplist selected, set the following in the Properties dialog:

• In the Title value field, enter “Active Base”.

• In the Initial Value field, click on the arrow. This displays a popup edit
control. Enter “Base One”, press Control+Enter to move to the next line,
enter “Base Two”, and press Enter to close the popup edit control.

7. On the Events tab of the Properties dialog, set OnSelectValue to “OnSelect”.

8. On the IDL GUIBuilder toolbar, click on the Base Widget button, then click on
the top-level base. This adds a base widget of the default size to the interface.

9. With the new base selected, set the following attributes in the Properties
dialog:

• In the Name value field, enter “base0”.

• Set the Frame attribute to True.

10. On the IDL GUIBuilder toolbar, click on the Base Widget button, then click on
the base you just added. This adds a base widget to the “base0” widget.

11. With the newly-added base selected, set the following attributes in the
Properties dialog:

• In the Name value field, enter “base1”.
Building IDL Applications IDL GUIBuilder Examples



536 Chapter 21: Using the IDL GUIBuilder
• Set the Component Sizing attribute to Explicit.

• In the X Offset value field, enter “0”.

• In the X Size value field, enter “200”.

• In the Y Offset value field, enter “0”.

• In the Y Size value field, enter “200”.

12. Right-click on a base, and choose Browse from the context menu. This opens
the Widget Browser.

13. In the Widget Browser, right-click on base1, and choose Copy, which copies
the widget to the local clipboard.

14. In the Widget Browser, right-click on “base0”, and choose Paste, which pastes
the copied base in to the “base0” widget. The new base is called “base1_0”.

15. In the Widget Browser, select “base1_0”. This selects the base in the IDL
GUIBuilder window and updates the Properties dialog with the appropriate
properties and values.

16. With “base1_0” selected, set the following attributes in the Properties dialog:

• In the Name value field, enter “base2”.

• Set the Component Sizing attribute to Explicit.

• In the X Offset value field, enter “0”.

• In the X Size value field, enter “200”.

• In the Y Offset value field, enter “0”.

• In the Y Size value field, enter “200”.

17. Select File → Save. In the “Save As dialog”, select a location, enter
“visible.prc” in the File name field, and click Save. This saves the interface
definition.

18. In the Widget Browser, select “base1”.

19. With “base1” selected, set the Visible attribute to False. This will hide “base1”
and make “base2” visible.

20. On the IDL GUIBuilder toolbar, click the Button Widget button, then click on
“base2” in the IDL GUIBuilder. This adds a button to the base widget. Place
the button anywhere in this base.
IDL GUIBuilder Examples Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 537
21. With the button selected, set the Label attribute to “Button 2”.

22. In the Widget Browser, select “base2”, and using the Properties dialog, set the
Visible attribute to False to hide the base.

23. In the Widget Browser, select “base1”, and set the Visible attribute to True to
show the base.

24. On the IDL GUIBuilder toolbar, click the Label Widget button, then click on
“base1”. This adds a label to “base1”. Place the label anywhere in this base.

25. With the label widget selected, set the Text attribute to “Label 1”.

26. Select File → Save to save the changes to the visible.prc resource file.

The interface is now complete. It should look similar to the one shown in the
following figure.

Figure 21-12: Visible Widgets Example Application
Building IDL Applications IDL GUIBuilder Examples



538 Chapter 21: Using the IDL GUIBuilder
Generating and Modifying the Code

To generate and modify the code, follow these steps:

1. Select File → Generate .pro. In the “Save As” dialog, select a location, enter
“visible.pro” in the File name field, and click Save. This saves the
visible.pro widget code file and the visible_eventcb.pro event-
handler file.

2. Select File → Open, select the visible_eventcb.pro file, and click Open.

3. In the visible_eventcb.pro file, locate the OnSelect event procedure
place holder, which looks like this:

pro OnSelect, Event

end

4. Add the following code between the PRO and END statements:

; Toggle the mapping of the two IDL sub-bases and
; get the Widget IDs of the two sub-bases.
wBase1 = Widget_Info(Event.top, find_by_uname="base1")
wBase2 = Widget_Info(Event.top, find_by_uname="base2")

; Now update the mapping.
widget_control, wBase1, map=(Event.index eq 0)
widget_control, wBase2, map=(Event.index eq 1)

The added IDL code gets the Widget IDs of the sub-bases that you created and
sets the mapping (hide or show) of these bases depending on the selected value
of the droplist.

5. Select Run → Compile visible_eventcb.pro to save and compile the file.

Running the Application

To run this application, enter visible at the IDL command prompt. This command
executes the visible application. In the running application, you can change the
selection in the droplist, and the action will change the displayed widget.
IDL GUIBuilder Examples Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 539
Widget Properties

For each widget type, there is a set of attribute values and a set of event values you
can set using the IDL GUIBuilder Properties dialog. When you select a widget in the
IDL GUIBuilder window or in the Widget Browser, the Properties dialog is updated
to contain the properties for the selected widget. These properties include those
common to all widgets and those specific to the selected widget.

On the Attributes tab of the Properties dialog, the properties are set to default values
and are arranged in the following order:

• The Name attribute.

• An alphabetical list of common and widget-specific properties, combined.

On the Events tab, the possible events for a widget are listed in alphabetical order,
with the common and the widget-specific events combined. By default, no event
values are set initially. When you enter a routine name for an event property, you are
responsible for making sure that event procedure exists. IDL does not validate the
existence of the specified routine.

For information on how to open and use the Properties dialog, see “Using the
Properties Dialog” on page 511.

The rest of this chapter describes the properties you can set for each widget:

• Common Widget Properties

• Base Widget Properties

• Button Widget Properties

• Text Widget Properties

• Label Widget Properties

• Slider Widget Properties

• Droplist Widget Properties

• Listbox Widget Properties

• Draw Widget Properties

• Table Widget Properties
Building IDL Applications Widget Properties



540 Chapter 21: Using the IDL GUIBuilder
Common Widget Properties

There are several attribute and event property values you can set for all widgets. The
attribute properties include the name of the widget and the sizing properties. The
event properties include creation, realization, destruction, and tracking events.

The following sections describe the common properties:

• Common Attributes

• Common Events

Common Attributes

These are the common attributes, which you can set for all widgets:

Name

The Name attribute specifies the name of the component. This value can be any string
that is unique to the widget hierarchy of the interface, but the string cannot contain
spaces. For each widget you create in the IDL GUIBuilder, a default name is
supplied, and this name is in the WID_<TYPE>_<NUMBER> format.

If you copy and paste a widget in the IDL GUIBuilder, the new widget is given a
unique name based on the name of the one you copied. A number is added to the first
widget’s name, or an existing number is incremented.

You can use the Name value for the widget in your event callback routines. For
example, you can use the specified name to find the widget, using the
FIND_BY_UNAME keyword to the WIDGET_INFO function. Set the name for
each widget to a name that makes sense to you; set the name value to something that
is easy to remember and easy to use in your code.

In the generated *.pro file, this value is specified with the UNAME keyword to the
widget creation routines.

Component Sizing

The Component Sizing keyword determines how the component is sized, which is by
one of the following methods:

• Default: The widget is sized to a natural or implicit size. This is the default
setting for the attribute. For example, a label widget’s natural size is
determined by the size of the text it is displaying with extra space for margins.
The default size for each widgets is controlled by several things, including
Common Widget Properties Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 541
displayed font size and the characteristics of the operating system displaying
the interface.

• Explicit: The widget size is determined by several attributes, which include
Layout for the base and its own X Size and Y Size keywords.

In the generated *.pro widget file, this value is specified with the XSIZE and
YSIZE keywords to the widget creation routines.

Note
The default size of text widgets on Motif is based on the width of text, but the
default size for text widgets on Windows and Macintosh is approximately 20
characters.

Frame

The Frame attribute determines if the widget will have a frame or border around it.
These are the possible values:

• False: The widget will have no frame drawn around it. This is the default
value.

• True: The widget will have a frame or border around it.

In the generated *.pro widget file, this value is specified by the FRAME keyword to
the widget creation routines.

Note
The Frame attribute is not available for top-level base widgets.

Sensitive

The Sensitive attribute determines if the selected widget is active or not active on
startup. You can set this value to determine if the user can access and manipulate the
widget immediately after creation. These are the possible values:

• True: The widget is initially displayed as enabled and accepts keyboard or
mouse input and generates events. This is the default value.

• False: The widget is initially displayed as disabled and does not accept
keyboard or mouse input. The appearance of most widgets change when the
False value is set, but the appearance does not always change to indicate this
state.
Building IDL Applications Common Widget Properties



542 Chapter 21: Using the IDL GUIBuilder
In the generated *.pro file, this value is specified with the SENSITIVE keyword to
the widget creation routines.

Note
To change the sensitivity of a widget after the widget is created, use the
WIDGET_CONTROL function with the SENSITIVE keyword.

X Offset

The X Offset attribute specifies the X offset of the component from its parent. The
possible values for X Offset are o to n, in pixels; any number is valid. The Y Offset
attribute specifies the Y offset.

In the generated *.pro file, this value is specified with the XOFFSET keyword to
the widget creation routines.

Note
The X Offset attribute value is not used with base widgets that have the Layout
attribute set to Row or Column.

X Size

The X Size attribute specifies the width of the visible component in pixels. This
attribute is disabled when Component Sizing is set to Default (and the default size is
used). To enable this value, set Component Sizing to Explicit. The possible values for
X Size are 0 to n, in pixels.

In the generated *.pro file, this value is specified with the SCR_XSIZE keyword to
the widget creation routines.

Note
If you add scroll bars to a widget, use the widget-specific X Scroll attribute to set
the width of the virtual area.

Y Offset

The Y Offset attribute specifies the Y offset of the component from its parent in
pixels. The possible values for Y Offset are 0 to n, in pixels; any number is valid. The
X Offset attribute specifies the X offset.

In the generated *.pro file, this value is specified by the YOFFSET keyword to the
widget creation routines.
Common Widget Properties Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 543
Note
The Y Offset attribute value is not used with base widgets that have the Layout
attribute set to Row or Column.

Y Size

The Y Size attribute specifies the height of the visible component in pixels. This
attribute is disabled when Component Sizing is set to Default (and the default size is
used). To enable this value, set Component Sizing to Explicit. The possible values for
Y Size are 0 to n, in pixels.

In the generated *.pro file, this value is specified with the SCR_YSIZE keyword to
the widget creation routines.

Note
If you add scroll bars to a widget, use the widget-specific Y Scroll attribute to set
the height of the virtual area.

Common Events

These are the common events, which you can set for all widgets (by default, no event
values are initially set):

Handle Event

The Handle Event value is the function name that is called when an event arrives
from a widget that is rooted in an IDL GUIBuilder-created widget in the hierarchy.
All events are sent to this event function, except for creation and destruction events.

For example, if you add a compound widget to an interface, using the PostCreation
event procedure for a base widget, you should set the Handle Event value for that
parent base widget (for the compound widget’s parent widget). Then, you can handle
all the events returned by the compound widget using this event function value.

In the generated *_eventcb.pro file, the event function place holder looks like
this:

Function <Name>, Event

return, Event
End

Name is the name of the event function you specify. Event is the returned event
structure, which is specific to the widget event.
Building IDL Applications Common Widget Properties



544 Chapter 21: Using the IDL GUIBuilder
For an example of how to handle the generated Handle Event function, see “Adding
Compound Widgets” on page 532.

OnDestroy

The OnDestroy value is the routine name that is called when the widget is destroyed.
In the generated *_eventcb.pro file, the event calling sequence looks like this:

pro <RoutineName>, wWidget

RoutineName is the name of the event procedure you specify. wWidget is the IDL
widget identifier.

OnRealize

The OnRealize value is the routine name that is called automatically when the widget
is realized. In the generated *_eventcb.pro file, the event calling sequence looks
like this:

pro <RoutineName>, wWidget

RoutineName is the name of the event procedure you specify. wWidget is the IDL
widget identifier.

OnTimer

The OnTimer value is the routine name that is called when a timer event is detected
for a widget. In the generated *_eventcb.pro file, the event calling sequence looks
like this:

pro <RoutineName>, Event

RoutineName is the name of the event procedure you specify. Event is the returned
event structure, which has the 3 standard event tags and looks like this:

{ WIDGET_TIMER, ID:0L, TOP:0L, HANDLER:0L }

You must set timer events for a widget, using the WIDGET_CONTROL function.
The code generated by the IDL GUIBuilder only routes the events.

OnTracking

The OnTracking value is the routine name that is called when the widget receives a
tracking event, which occurs when the mouse pointer enters or leaves the region of
the widget. In the generated *_eventcb.pro file, the event calling sequence looks
like this:

pro <RoutineName>, Event
Common Widget Properties Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 545
RoutineName is the name of the event procedure you specify. Event is the returned
structure, which is of the following type:

{ WIDGET_TRACKING, ID:0L, TOP:0L, HANDLER:0L, ENTER:0 }

ENTER is 1 if the tracking event is an entry event, and 0 if it is an exit event.

PostCreation

The PostCreation value is the routine name that is called after the widget is created,
but before it is realized. In the generated *_eventcb.pro file, the calling sequence
looks like this:

pro <RoutineName>, wWidget

RoutineName is the name of the event procedure you specify. wWidget is the IDL
widget identifier.
Building IDL Applications Common Widget Properties



546 Chapter 21: Using the IDL GUIBuilder
Base Widget Properties

A base widget holds other widgets, including other base widgets. You can create
groupings of widgets by using a base widget, thus forming a widget hierarchy.

When you open the IDL GUIBuilder, a top-level base is created, and you build your
interface in this base. Top-level bases are a special class of the base widgets that are
created without parent widgets; they act as the top-level parent in the widget
hierarchy.

In the IDL GUIBuilder, you can add a menubar to the top-level base by using the
Menu Editor.

In addition, you can make top-level bases float above their group leaders, with the
Floating attribute, or you can make them modal dialogs, with the Modal attribute.
Modal dialogs interrupt program execution until the user closes them. When you
make a top-level base floating or modal, you must provide a group leader when
calling the generated code, by using the GROUP_LEADER keyword.

When programming in IDL, you create base widgets using the WIDGET_BASE
function. For more information, see WIDGET_BASE in the IDL Reference Guide.

For more information on the Menu Editor, see “Using the Menu Editor” on page 514.

Note
A base widget’s layout is controlled by where you place it and the properties of its
parent base.

Base Widget Attributes

For base widgets, you can set common attributes and base-specific attributes. For a
list attributes common to all widgets, see “Common Attributes” on page 540.

Some of the base widget attributes apply to top-level bases only, and this limitation is
noted in the following list of base widget attributes:

# of Rows/Columns

The # of Rows/Columns attribute specifies the number of Columns or Rows to use
when laying out the base. This attribute is valid only when the Layout attribute is set
to Column or Row. The possible values for this setting are 1 to n, and the default
value is 1.
Base Widget Properties Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 547
In the generated *.pro file, this value is specified with the COLUMN or the ROW
keyword to the widget creation routine.

For information on other properties that control the layout of contained widgets, see
Alignment, Layout, Space, X Pad, and Y Pad.

Alignment

The Alignment attribute defines how components are aligned in the base. The way in
which the value of this attribute affects the display of widgets depends on the value of
the Layout attribute. The following is a list possible values for the Alignment
attribute, and each value description includes information on how it works with the
Layout settings:

• Center: Aligns the contained widgets with the center this parent base. This is
the default value. For this setting to take effect, the Layout setting must be
Row or Column. With Row set, the contained widgets are vertically centered.
With Column set, the contained widgets are horizontally centered.

• Top: Aligns contained widgets with the top of this parent base. For this setting
to take effect, the Layout setting must be Row.

• Bottom: Aligns the contained widgets with the bottom of this parent base. For
this setting to take effect, the Layout setting must be Row.

• Left: Aligns the contained widgets with the left side of this parent base. For
this setting to take effect, the Layout setting must be Column.

• Right: Aligns the contained widgets with the right side of this parent base. For
this setting to take effect, the Layout setting must be Column.

• Default: Uses the default layout.

In the generated *.pro file, these settings are specified with the
BASE_ALIGN_CENTER, BASE_ALIGN_TOP, BASE_ALIGN_BOTTOM,
BASE_ALIGN_LEFT, and BASE_ALIGN_RIGHT keywords to the widget creation
routine.

For information on other properties that control the layout of contained widgets, see #
of Rows/Columns, Layout, Space, X Pad, and Y Pad.

Allow Closing

The Allow Closing attribute determines if the top-level base can be closed by the
user. By default, this value is set to True and the base can be closed. To make it so the
top-level base cannot be close, set this value to False.
Building IDL Applications Base Widget Properties



548 Chapter 21: Using the IDL GUIBuilder
In the generated *.pro file, this value is specified with the TLB_FRAME_ATTR
keyword to the widget creation routine.

For information on other properties that control aspects of top-level bases, see the
Allow Moving, Minimize/Maximize, System Menu, and Title Bar properties.

Note
This attribute setting is used with top-level bases only. Note that this setting is only
a hint to the window system and might be ignored by some window managers.

Allow Moving

The Allow Moving attribute determines if the base can be moved. By default, this
value is set to True, and the base can be moved. To suppress this behavior, set this
value to False.

In the generated *.pro file, this value is specified with the TLB_FRAME_ATTR
keyword to the widget creation routine.

For information on other attribute settings that control aspects of top-level bases, see
the Allow Closing, Minimize/Maximize, System Menu, and Title Bar attributes.

Note
This attribute setting is used with top-level bases only. Note that this setting is only
a hint to the window system and might be ignored by some window managers.

Floating

The Floating attribute determines if the top-level base is a floating base (always on
top). By default, this setting is False, indicating that the base is not a floating base. To
create a floating base, set this attribute to True.

If you make a top-level base floating, you must set the GROUP_LEADER keyword
to a valid widget ID when calling the generated procedure.

In the generated *.pro file, this value is specified with the FLOATING keyword to
the widget creation routine.

Note
This attribute setting is used with top-level bases only.
Base Widget Properties Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 549
Grid Layout

The Grid Layout attribute determines if the base will have a grid layout, in which all
columns have the same width, or in which all rows have the same height. These are
the possible values:

• False: Columns or rows will not be the same size. This is the default value.

• True: Column widths or row heights are taken from the largest child widget. If
you set this attribute to True, you must also set the Layout attribute to Column
or Row and the # of Rows/Columns attribute to more than 1.

In the generated *.pro file, this value is specified with the GRID_LAYOUT
keyword to the widget creation routine.

Layout

The Layout attribute specifies how components are laid out in the base. These are the
possible values:

• Bulletin: Indicates that you can position the widgets anywhere on the base.
This is the default setting.

• Column: Indicated that widgets should be in columns. If you set this value, you
should also set the # of Rows/Columns attribute and the Alignment attribute.

• Row: Indicated that widgets should be in rows. If you set this value, you
should also set the # of Rows/Columns attribute and the Alignment attribute.

Note
When using code generated by the IDL GUIBuilder on other non-Windows
platforms, more consistent results are obtained by using a row or column layout for
your bases instead of a bulletin board layout. By using a row or column layout,
differences in the default spacing and decorations (e.g., beveling) of widgets on
each platform can be avoided

The number of child widgets placed in each column or row is calculated by dividing
the number of created child widgets by the number of columns or rows specified (# of
Rows/Columns). When one column or row is filled, a new one is started.

The width of each column or the height of the row is determined by the largest widget
in that column or row. If you set the Grid Layout attribute to True, all columns or
rows are the same size; they are the size of the largest widget.

If you set the Alignment attribute for the base, the contained widgets are their
“natural” size. If you do not set the Alignment attribute for the base or the child
Building IDL Applications Base Widget Properties



550 Chapter 21: Using the IDL GUIBuilder
widgets, all contained widgets will be sized to the width of the column or the height
of the row.

For information on other properties that control the layout of contained widgets, see #
of Rows/Columns, Alignment, Space, X Pad, and Y Pad.

In the generated *.pro file, this value is specified with the COLUMN or the ROW
keyword to the widget creation routine.

Note
When you create a radio button or checkbox, it is created in a base, and you can add
more radio buttons or checkboxes to that base (the added widgets must all be of the
same type). The base in which radio buttons and checkboxes are created has a
column layout setting, and buttons you add will be lined up in a column format.

Minimize/Maximize

The Minimize/Maximize attribute determines if the top-level base can be resized,
minimized, and maximized. By default, this value is set to True. To disable this
behavior, set this attribute to False.

In the generated *.pro file, this value is specified with the TLB_FRAME_ATTR
keyword to the widget creation routine.

For information on other attribute settings that control aspects of top-level bases, see
the Allow Closing, Allow Moving, System Menu, and Title Bar attributes.

Note
This attribute setting is used with top-level bases only. Note that this setting is only
a hint to the window system and might be ignored by some window managers.

Modal

The Modal attribute determines if this top-level base is a modal dialog. By default,
this value is set to False. To make the base a modal dialog, set this attribute to True.

If you set the Modal attribute to True, you cannot set the Scroll attribute, and you
cannot define a menu for the top-level base. In addition, the Sensitive common
attribute and the Visible base widget attribute are also disabled.

If you make a top-level base a modal dialog, you must set the GROUP_LEADER
keyword to a valid widget ID in the generated procedure.
Base Widget Properties Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 551
In the generated *.pro file, this value is specified with the MODAL keyword to the
widget creation routine.

Note
This attribute setting is used with top-level bases only.

Scroll

The Scroll attribute determines if the base widget will support scrolling. By default,
this attribute is set to False, and the base will not support scrolling. To give the
widget scroll bars and allow for viewing portions of the widget contents that are not
currently in the viewport area, set the Scroll attribute to True. In the IDL GUIBuilder,
scroll bars on bases are live so that you can work on the entire virtual area of your
application.

If you set the Modal attribute to True, you cannot set the Scroll attribute.

In the generated *.pro file, this value is specified with the SCROLL keyword to the
widget creation routine.

To set the size of the scrollable region, use the X Scroll and Y Scroll attributes.

Note
For the Macintosh, if you set X Size or Y Size to a value less than 48, the base
created with the Scroll attribute will be a minimum of 48x48. If you have not
specified values for the X Size or Y Size attribute, the base will be set to a minimum
of 66x66. If the base is resized, it will jump to the minimum size of 128x64.

Space

The Space attribute specifies the number of pixels between the contained widgets
(the children) in a column or row Layout. By default, this value is set to 3 pixels and
that is the space between the contained widgets. Valid values for this attribute are 0 to
n pixels.

In the generated *.pro file, this value is specified with the SPACE keyword to the
widget creation routine.

To set the space from the edge of the base, use the X Pad and Y Pad properties. For
information on other properties that control the layout of contained widgets, see # of
Rows/Columns, Alignment, and Layout.
Building IDL Applications Base Widget Properties



552 Chapter 21: Using the IDL GUIBuilder
Note
You cannot set this attribute on a base containing radio buttons or checkboxes.

System Menu

The System Menu attribute determines if the system menu is displayed or suppressed
on a top-level base. By default, this value is set to True, indicating that the system
menu will be used. To suppress the menu, set this attribute to False.

In the generated *.pro file, this value is specified with the TLB_FRAME_ATTR
keyword to the widget creation routine.

For information on other attribute settings that control aspects of top-level bases, see
the Allow Closing, Allow Moving, Minimize/Maximize, and Title Bar attributes.

Note
This attribute setting is used with top-level bases only.

Title

The Title attribute specifies the title of a top-level base. By default, this value is set to
IDL, but you can change it to any string.

In the generated *.pro file, this value is specified with the TITLE keyword to the
widget creation routine.

Note
This attribute setting is used with top-level bases only.

Title Bar

The Title Bar attribute determines if the title bar will be displayed. By default, this
value is set to True, and the title bar is displayed. To suppress the display of the title
bar, set this value to False.

For interfaces running on the Macintosh, you cannot suppress the title bar because
only modal dialogs use a window without a title bar. Suppressing the title bar would
be contrary to Macintosh Human Interface Guidelines and would create an
immovable window.

In the generated *.pro file, this value is specified with the TLB_FRAME_ATTR
keyword to the widget creation routine.
Base Widget Properties Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 553
For information on other attribute settings that control aspects of top-level bases, see
the Allow Closing, Allow Moving, Minimize/Maximize, and System Menu
attributes.

Note
This attribute setting is used with top-level bases only. Note that this setting is only
a hint to the window system and might be ignored by some window managers.

Visible

The Visible attribute specifies whether to show or hide the base component and its
descendants. Show, the default value, specifies to display the hierarchy when
realized. The Hide value specifies that the hierarchy should not be displayed initially.
This mapping operation applies only to base widgets.

In the generated *.pro file, this value is specified with the MAP keyword to the
widget creation routine.

Note
If you set the Modal attribute to True, you cannot set the Visible attribute value.

X Pad

The X Pad attribute specifies the horizontal space (in pixels) between child widgets
and the edges of rows or columns. By default, this value is set to 3 pixels, indicating
that there are 3 pixels between the edge of the base and the contained widgets. Valid
values for this attribute are 0 to n pixels.

In the generated *.pro file, this value is specified with the XPAD keyword to the
widget creation routine.

To set the space between widgets, use the Space attribute. For information on other
attributes that control the layout of contained widgets, see # of Rows/Columns,
Alignment, Layout, and Y Pad.

Note
You cannot set this attribute for a base that contains radio buttons or checkboxes. In
the IDL GUIBuilder, a base is created when you add a radio button or checkbox to
an interface, and you can add more radio buttons or checkboxes to that base. When
you add the buttons, they are lined up in a column format.
Building IDL Applications Base Widget Properties



554 Chapter 21: Using the IDL GUIBuilder
X Scroll

The X Scroll attribute specifies the width in pixels of the base area, which includes
the exposed as well as the virtual area. There is no default value set, but you can set
this value to any number of pixels from 0 to n. To add scroll bars to the base, use the
Scroll attribute, and to set the height of the scrollable base area, use the Y Scroll
attribute.

In the generated *.pro file, this value is specified with the XSIZE keyword to the
widget creation routine.

Note
To set the width of the displayed widget, use the X Size common attribute.

Y Pad

The Y Pad attribute specifies the vertical space (in pixels) between child components
and the edge of the base in a row or column Layout. By default, this value is set to 3
pixels, indicating that there are 3 pixels between the edge of the base and the
contained widgets. Valid values for this attribute are 0 to n pixels.

In the generated *.pro file, this value is specified with the YPAD keyword to the
widget creation routine.

To set the space between widgets, use the Space attribute. For information on other
attributes that control the layout of contained widgets, see # of Rows/Columns,
Alignment, Layout, and X Pad.

Note
You cannot set this attribute on a base containing radio buttons or checkboxes. In
the IDL GUIBuilder, a base is created when you add a radio button or checkbox to
an interface, and you can add more radio buttons or checkboxes to that base.

Y Scroll

The Y Scroll attribute specifies the height in pixels of the base area, which includes
the exposed as well as the virtual area. There is no default value set, but you can set
this value to any number of pixels from 0 to n.

To add scroll bars to the base, use the Scroll attribute, and to set the width of the base
area, use the X Scroll attribute.

In the generated *.pro file, this value is specified with the YSIZE keyword to the
widget creation routine.
Base Widget Properties Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 555
Note
To set the height of the displayed widget, use the Y Size common attribute.

Base Widget Events

For base widgets, you can set common event properties and base-specific event
properties. By default, event values are not set. For a list of events common to all
widgets, see “Common Events” on page 543.

The following is a list of event properties specific to base widgets:

OnFocus

The OnFocus value is the routine name that is called when the keyboard focus of the
base changes. In the generated *_eventcb.pro file, the event calling sequence
looks like this:

pro <RoutineName>, Event

RoutineName is the name of the event procedure you specify. Event is the returned
event structure, which is returned when the keyboard focus changes and is of the
following type:

{ WIDGET_KBRD_FOCUS, ID:0L, TOP:0L, HANDLER:0L, ENTER:0 }

ENTER returns 1 if the base is gaining the keyboard focus, and returns 0 if the base is
losing the keyboard focus.

OnKillRequest

The OnKillRequest value is the routine that is called when the user attempts to kill
the top-level base widget. In the generated *_eventcb.pro file, the event calling
sequence looks like this:

pro <RoutineName>, Event

RoutineName is the name of the event procedure you specify. Event is the returned
event structure, which is returned when a user tries to destroy the widget using the
window manager and is of the following type:

{ WIDGET_KILL_REQUEST, ID:0L, TOP:0L, HANDLER:0L }

Note that this event structure contains the standard three fields that all widgets
contain.
Building IDL Applications Base Widget Properties



556 Chapter 21: Using the IDL GUIBuilder
Note
This event procedure is valid for top-level bases only.

OnSizeChange

The OnSizeChange value is the name of the routine that is called when the top-level
base has been resize. In the generated *_eventcb.pro file, the event calling
sequence looks like this:

pro <RoutineName>, Event

RoutineName is the name of the event procedure you specify. Event is the returned
event structure, which is returned when the top-level base is resized by the user and is
of the following type:

{ WIDGET_BASE, ID:0L, TOP:0L, HANDLER:0L, X:0, Y:0 }

The X and Y fields return the new width of the base, not including any frame
provided by the window manager.

Note
This event procedure is valid for top-level bases only.
Base Widget Properties Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 557
Button Widget Properties

In IDL, a button widget can be a button (push button), radio button, or checkbox.

A push button is activated by a single-click. Push buttons can be of any size. You can
set the Menu attribute to yes for a button widget, and then it can contain a pull-down
menu. When you do so, the Label is enclosed in a box to indicate that the button is a
menu button.

Radio buttons have two states, set and unset, and they belong to a group that allows
only one radio button selection for that group. The group is defined as all buttons
contained in the same exclusive base widget. When a radio button in a base (in a
group) is selected, any other button selection in that base is cleared. When you create
a radio button in the IDL GUIBuilder, it is created in an exclusive base widget, and
you can add only radio buttons to that base.

Checkboxes have two states, set and unset, and they are grouped in a non-exclusive
base widget. The base widget allows for any number of checkboxes to be set at one
time, and you can also use single checkboxes in your interface. When you create a
checkbox in the IDL GUIBuilder, it is created in an non-exclusive widget base, and
you can add only checkboxes to this base.

When programming in IDL, you create push buttons, radio buttons, and checkboxes
using the WIDGET_BUTTON function. For more information, see
WIDGET_BUTTON in the IDL Reference Guide.

Note
The bases in which radio buttons and checkboxes are created have the Layout
attribute set to column so when you add more widgets they are lined up
appropriately.

Creating Multiple Radio Buttons or Checkboxes

To create several radio buttons or checkboxes in a base widget:

1. Click on the radio button or checkbox tool, and click on the location to add the
button. This creates a base with one radio button or checkbox in it.

2. Click on the radio button or checkbox tool, and click in the radio button or
checkbox base area you just created. This adds a radio button or checkbox to
the base.
Building IDL Applications Button Widget Properties



558 Chapter 21: Using the IDL GUIBuilder
When you drop a button in an exclusive or non-exclusive base, the added
buttons line up in columns; by default, these exclusive and non-exclusive bases
have their Layout attribute set to Column.

3. Repeat step 2 until you have the desired number of buttons.

4. If you want to change the layout of the checkboxes or radio buttons, you can
open the Properties dialog and set the Layout common attribute for the base
widget to Row or Bulletin.

5. To set the properties for each button in the base, open the Properties dialog,
click the push pin button to keep it on top, then click on each radio button or
checkbox to set their individual properties.

Button, Radio Button, and Checkbox Widget Attributes

For button widgets, you can set common attributes and button-specific attributes. For
a list of common attributes, see “Common Attributes” on page 540. The following is
a list of button widget attributes, which apply to push buttons, radio buttons, and/or
checkboxes:

Alignment

The Alignment attribute specifies how the text label is aligned in the button widget.
These are the possible alignment values:

• Center: The label text is centered.

• Left: The label text is left-justified.

• Right: The label text is right-justified.

In the generated *.pro file, this value is specified by the ALIGN_CENTER, the
ALIGN_LEFT, or the ALIGN_RIGHT keyword to the widget creation routine.

Bitmap

The Bitmap attribute allows you to select a bitmap to be displayed in the push button,
and it allows you to access the Bitmap Editor to create or modify a bitmap file (*.bmp
file). This value applies only to buttons (not to radio buttons or checkboxes).

To set this value, set the Type value to Bitmap, then the Bitmap attribute displays in
the Properties dialog. When the button type is “Bitmap”, you can set the Bitmap
attribute to the path and name of the bmp file.

When you click on the arrow in the Bitmap attribute Value field, you can choose
from the following options:
Button Widget Properties Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 559
• Select Bitmap: Launches an Open dialog that you can use to locate and select
the existing *.bmp file to be placed in the button.

• Edit Bitmap: Launches an Open dialog that you can use to locate and select the
existing *.bmp file to be opened in the Bitmap Editor. You can modify the
bitmap and save it. The bitmap is then displayed in the button.

• New Bitmap: Opens the Bitmap Editor which you can use to create and save a
bitmap. When you save the new bitmap, it is displayed in the button.

In the generated *.pro file, this value is specified with the VALUE and Bitmap
keyword to the widget creation routine.

For information on using the Bitmap Editor, see “Using the Bitmap Editor” on
page 517.

Label

The Label attribute specifies the text label for a button. If you set the Type attribute to
Bitmap (for push buttons only), this value is not displayed. For radio buttons and
checkboxes, the label value is the text string displayed next to the button. By default,
this value is set to Button, and you can change it to any string.

In the generated *.pro file, this value is specified with the VALUE keyword to the
widget creation routine.

No Release

The No Release attribute enables and disables the dispatching of button release
events for radio buttons and checkboxes. Normal buttons do not generate events
when released, but radio buttons and checkboxes can return separate events for the
select and release actions. These are the possible values:

• True: The release event is not returned; only the select event is returned. This
is the default setting.

• False: Both the release and select events are returned.

In the generated *.pro file, this values is specified with the NO_RELEASE keyword
to the widget creation routine.

Note
The No Release attribute is for radio buttons and checkboxes only.
Building IDL Applications Button Widget Properties



560 Chapter 21: Using the IDL GUIBuilder
Type

The Type attribute specifies if a push button is a plain push button, a menu button, or
a bitmap button. This attribute applies only to push buttons (not to radio buttons or
checkboxes). These are the possible values:

• Push: The button widget is a plain push button. This is the default value.

• Menu: The button contains a menu. After you select this value, you can right-
click on the button widget, choose Edit Menu, and define a menu to display,
using the Menu Editor.

• Bitmap: The button displays a bitmap, which you would use to create a toolbar
for example. If you change the Type value to Bitmap, the Bitmap attribute is
displayed and you can select, modify, or create a bitmap to display on the
button.

In the generated *.pro file, this value is specified with the MENU or VALUE
keywords to the widget creation routine.

Button, Radio Button, and Checkbox Widget Events

For button widgets, you can set common event properties and button-specific event
properties. By default, event values are not set. For a list of events common to all
widgets, see “Common Events” on page 543.

The following is the event property specific to button widgets; it applies to push
buttons, radio buttons, and checkboxes:

OnButtonPress

The OnButtonPress value is the routine that is called when the button is pressed, or
when a button is released for a radio button or checkbox button. In the generated
*_eventcb.pro file, the event calling sequence looks like this:

pro <RoutineName>, Event

RoutineName is the name of the event procedure you specify. Event is the returned
event structure, which is of the following type:

{ WIDGET_BUTTON, ID:0L, TOP:0L, HANDLER:0L, SELECT:0 }

SELECT is set to 1 if the button was set, and 0 if released. Push buttons do not
generate events when released, so SELECT will always be 1 for a push button.
However, radio buttons and checkboxes are toggle buttons, and thus return separate
events for the set and the release actions. To control whether or not release events are
returned, set the No Release attribute.
Button Widget Properties Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 561
Text Widget Properties

Use text widgets to display text, and optionally, use them to accept textual input from
users. The text widgets can have one or more lines, and if necessary, the widget can
contain scroll bars to allow for viewing longer text.

When programming in IDL, you create text widgets using the WIDGET_TEXT
function. For more information, see WIDGET_TEXT in the IDL Reference Guide.

Note
Use text widgets for displaying large amounts of text, or when you want the user to
be able to edit the text. Use label widgets to display single-line labels that the user
cannot edit.

Text Widget Attributes

For text widgets, you can set common attributes and text-specific attributes. For a list
of common attributes, see “Common Attributes” on page 540. The following are the
attributes specific to text widgets:

Editable

The Editable attribute determines if the text widget is editable or not. By default, this
value is set to False, which means the text widget is not editable. To make the text
widget editable, set this value to True.

In the generated *.pro file, this value is specified with the EDITABLE keyword to
the widget creation routine.

Height

The Height attribute specifies the height of the text widget in text lines. Valid values
for this attribute are 1 to n. The default value, is 1, or one text line.

Note that the physical height of the text widget depends on the value of the Height
attribute and on the size of the font used. The default font size is used, unless you
modify your generated code to use a different font, and the default font size is
platform specific.

In the generated *.pro file, this value is specified by the YSIZE keyword to the
widget creation routine.
Building IDL Applications Text Widget Properties



562 Chapter 21: Using the IDL GUIBuilder
Initial Value

The Initial Value attribute specifies the initial array of values that are placed in the
text widget. You can enter either a string or an array of strings.

To enter more than one string in the Value field, type in a string, then press
Control+Enter (at the end of each line). This moves you to the next line. When you
have entered the strings you want, press Enter to set the values.

In the generated *.pro file, this value is specified by the VALUE keyword to the
widget creation routine.

Note
Variables returned by the GET_VALUE keyword to WIDGET_CONTROL are
always string arrays, even if a scalar string is specified in the call to
WIDGET_TEXT.

Scroll

The Scroll attribute determines if the text widget displays scroll bars. By default, this
value is set to False, which indicates that no scroll bars will be displayed. To have the
text widget display scroll bars, set this value to True.

In the generated *.pro file, this value is specified by the SCROLL keyword to the
widget creation routine.

Width

The Width attribute specifies the width of the text widget in characters. Valid values
for this attribute are 0 to n. By default, Width is set to 0, which indicates that default
IDL sizing should be used when, as long as default Component Sizing is also set.

Note that the physical width of the text widget depends on the value of the Width
attribute and on the size of the font used. The default font size varies according to
your windowing system. On Windows and Macintosh, the default size is roughly 20
characters. On Motif, the default size depends on the system default.

In the generated *.pro code, this value is specified with the XSIZE keyword.

Word Wrapping

The Word Wrapping attribute determines whether scrolling or multi-line text widgets
should automatically break lines between words to keep the text from extending past
the right edge of the text display area. By default this value is set to False, and
carriage returns are not automatically entered; the value of the text widget will
Text Widget Properties Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 563
remain a single-element array. To have the text widget enter carriage returns at the
end of lines, change this value to True.

In the generated *.pro code, this value is specified with the WRAP keyword.

Text Widget Events

For text widgets, you can set common event properties and text-specific event
properties. By default, event values are not set. For a list of events common to all
widgets, see “Common Events” on page 543.

You can set the following event values for text widgets:

OnDelete

The OnDelete value is the routine that is called when text is deleted from the text
widget. To set this event value, you must set the Editable attribute to True.

In the generated *_eventcb.pro file, the calling sequence looks like this:

pro <RoutineName>, Event

RoutineName is the name of the event procedure you specify. Event is the returned
event structure, which is returned when any amount of text is deleted from a text
widget. The event structure is of the following type:

{ WIDGET_TEXT_DEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:2, OFFSET:0L,
LENGTH:0L }

OFFSET is the (zero-based) character position of the first character to be deleted, and
it is also the insertion position that will result when the characters have been deleted.
LENGTH gives the number of characters deleted, where 0 (zero) indicates that no
characters were deleted.

OnFocus

The OnFocus value is the routine that is called when the keyboard focus changes. In
the generated *_eventcb.pro event code, the calling sequence looks like this:

pro <RoutineName>, Event

RoutineName is the name of the event procedure you specify. Event is the returned
structure, which is of the following type:

{ WIDGET_KBRD_FOCUS, ID:0L, TOP:0L, HANDLER:0L, ENTER:0 }

ENTER returns 1 if the text widget is gaining the keyboard focus, or 0 if the text
widget is losing the keyboard focus.
Building IDL Applications Text Widget Properties



564 Chapter 21: Using the IDL GUIBuilder
OnInsertCh

The OnInsertCh value is the routine that is called when a single character is inserted
in the widget. To set this event value, you must set the Editable attribute to True.

In the generated *_eventcb.pro file, the calling sequence looks like this:

pro <RoutineName>, Event

RoutineName is the name of the event procedure you specify. Event is the returned
event structure, which is returned a single character is typed or pasted into a text
widget by a user. The event structure is of the following type:

{ WIDGET_TEXT_CH, ID:0L, TOP:0L, HANDLER:0L, TYPE:0, OFFSET:0L,
CH:0B }

OFFSET is the (zero-based) insertion position that will result after the character is
inserted. CH is the ASCII value of the character.

OnInsertString

The OnInsertString value is the routine that is called when a text string is inserted in
the text widget. To set this event value, you must set the Editable attribute to True.

In the generated *_eventcb.pro file, the calling sequence looks like this:

pro <RoutineName>, Event

RoutineName is the name of the event procedure you specify. Event is the event
structure that is returned when multiple characters are inserted in to text widget. The
event structure is of the following type:

{ WIDGET_TEXT_STR, ID:0L, TOP:0L, HANDLER:0L, TYPE:1, OFFSET:0L,
STR:'' }

OFFSET is the (zero-based) insertion position that will result after the text is inserted.
STR is the string to be inserted.

OnTextSelect

The OnTextSelect value is the routine that is called when text is selected in the text
widget. To set this event value, you must also set the Editable attribute to True.

In the generated *_eventcb.pro file, the calling sequence looks like this:

pro <RoutineName>, Event

RoutineName is the name of the event procedure you specify. Event is the returned
event structure, which is returned when an area of text is selected. The event structure
is of the following type:
Text Widget Properties Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 565
{ WIDGET_TEXT_SEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:3, OFFSET:0L,
LENGTH:0L }

This event announces a change in the insertion point. OFFSET is the (zero-based)
character position of the first character selected, which can also be the insertion
position. LENGTH gives the number of characters involved, where zero indicates
that no characters are selected.

Note
Text insertion, text deletion, or any change in the current insertion point causes any
current selection to be lost. In such cases, the loss of selection is implied by the text
event reporting the insert, delete, or movement event, and a separate zero length
selection event is not sent.
Building IDL Applications Text Widget Properties



566 Chapter 21: Using the IDL GUIBuilder
Label Widget Properties

Label widgets display static text. They are similar to single-line text widgets, but they
are optimized for small labeling purposes.

There are no label widget-specific event properties.

When programming in IDL, you create label using the WIDGET_LABEL function.
For more information, see WIDGET_LABEL in the IDL Reference Guide.

Note
Use label widgets to display single-line labels that you do not want the user to be
able to edit. Use text widgets for displaying larger amounts of text, or text that you
want the user to be able to edit.

Label Widget Attributes

For label widgets, you can set common attributes and label-specific attributes. For a
list of common attributes, see “Common Attributes” on page 540. These are the label
widget attributes:

Alignment

The Alignment attribute specifies how label Text is aligned. These are the possible
values:

• Left: The text is left-justified. This is the default value.

• Center: The text is centered.

• Right: The text is right-justified.

In the generated *.pro file, this value is specified with the ALIGN_CENTER, the
ALIGN_RIGHT, or the ALIGN_LEFT keyword to the widget creation routine.

Text

The Text attribute specifies the text string that is displayed in the label widget. By
default, this value is set to Label, and you can set it to any string.

In the generated *.pro file, this value is specified with the VALUE keyword to the
widget creation routine.
Label Widget Properties Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 567
Label Widget Events

There are no events specific to Label widgets. For a list of the common widget
events, see “Common Events” on page 543.
Building IDL Applications Label Widget Properties



568 Chapter 21: Using the IDL GUIBuilder
Slider Widget Properties

Horizontal or vertical slider widgets allow for the selection of a value within a range
of possible integer values. A slider widget is a rectangular region representing a range
of values, with a sliding pointer inside that indicates or selects the current value. This
sliding pointer can be manipulated by the user dragging it with the mouse, or within
IDL code.

When programming in IDL, you create horizontal or vertical slider widgets using the
WIDGET_SLIDER function. See WIDGET_SLIDER in the IDL Reference Guide.

Horizontal and Vertical Slider Widget Attributes

For slider widgets, you can set common attributes and slider-specific attributes. For a
list of common attributes, see “Common Attributes” on page 540. The following is a
list of slider attributes:

Maximum Value

The Maximum Value attribute specifies the maximum range value for the slider. The
default value is 100, but you can set this attribute to any integer. This value works
with the Minimum Value attribute.

In the generated *.pro file, this value is specified with the MAXIMUM keyword to
the widget creation routine.

Minimum Value

The Minimum Value attribute specifies the minimum range value of the slider. The
default value is 0, but you can set this attribute to any integer. This attribute works
with the Maximum Value attribute.

In the generated *.pro file, this value is specified with the MINIMUM keyword to
the widget creation routine.

Position

The Position attribute specifies the initial value position of the slider. By default this
is set to 0, so the initial position will be at 0. You can set this value to any integer
within the range of the Maximum Value and Minimum Value attribute settings.

In the generated *.pro file, this value is specified with the VALUE keyword to the
widget creation routine.
Slider Widget Properties Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 569
Suppress Value

The Suppress Value attribute controls the display of the current slider value. Sliders
work only with integer units. You can use this attribute to suppress the actual value of
a slider so that a program can present the user with a slider that seems to work in
other units (such as floating-point) or with a non-linear scale. By default, this value is
set to False, indicating that the current slider values, in integer units, should be
displayed. To suppress the display of the current values, set this attribute value to
True.

In the generated *.pro file, this value is specified with the SUPPRESS_VALUE
keyword to the widget creation routine.

Title

The Title attribute specifies the label or title that is associate with the slider widget.
By default, this is not set; it is an empty string. You can set the title to any string.

In the generated *.pro file, this value is specified with the TITLE keyword to the
widget creation routine.

Horizontal and Vertical Slider Widget Events

For slider widgets, you can set common event properties and slider-specific event
properties. By default, event values are not set. For a list of events common to all
widgets, see “Common Events” on page 543.

This is the event property specific to slider widgets:

OnChangeValue

The OnChangeValue specifies the routine that is called when the value of the slider is
changed. When you set this event value, the calling sequence looks like this in the
generated *_eventcb.pro file:

pro <RoutineName>, Event

RoutineName is the name of the event procedure you specify. Event is the returned
event structure, which is returned when a slider is moved. The event structure is of the
following type:

{ WIDGET_SLIDER, ID:0L, TOP:0L, HANDLER:0L, VALUE:0L, DRAG:0 }

VALUE returns the new value of the slider. DRAG returns integer 1 if the slider event
was generated as part of a drag operation, or zero if the event was generated when the
user had finished positioning the slider. Note that the slider widget only generates
events during the drag operation if the DRAG keyword is set, and if the application is
running on Motif. That is, in most cases, DRAG will return zero.
Building IDL Applications Slider Widget Properties



570 Chapter 21: Using the IDL GUIBuilder
Droplist Widget Properties

Droplist widgets display a single entry from a list of possible choices. To choose
from the list, click the droplist, then click on the item in the list. On Motif operating
systems, the droplist widget looks like a button, which when clicked displays the
drop-down list.

When programming in IDL, you create droplist widgets using the
WIDGET_DROPLIST function. For more information, see WIDGET_DROPLIST in
the IDL Reference Guide.

Droplist Widget Attributes

For droplist widgets, you can set common attributes and droplist-specific attributes.
For a list of common attributes, see “Common Attributes” on page 540. These are the
droplist attributes:

Initial Value

The Initial Value attribute specifies the initial list of values that are placed in the
droplist widget. The initial value of a droplist can be a scalar string, or it can be a list
of strings. By default, this value is not set, and the droplist is empty.

To enter more than one string in the Value field, type in a string, then press
Control+Enter (at the end of each line). This moves you to the next line. When you
have entered as many strings as you want, press Enter to set the values.

In the generated *.pro file, this value is specified with the VALUE keyword to the
widget creation routine.

Title

The Title attribute specifies the title string, or label, for the droplist. This value can be
any string. By default, this value is set to NULL.

In the generated *.pro file, this value is specified by the TITLE keyword to the
widget creation routine.

Droplist Widget Events

For droplist widgets, you can set common event properties and droplist-specific event
properties. By default, event values are not set. For a list of events common to all
widgets, see “Common Events” on page 543.

This is the event property specific to droplist widgets:
Droplist Widget Properties Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 571
OnSelectValue

The OnSelectValue specifies the routine that is called when a droplist item is
selected. When a user selects an item from a droplist, the widget deselects the
previously selected item, changes the visible item on the droplist, and generates an
event.

When you set this event value, the calling sequence looks like this in the generated
*_eventcb.pro file:

pro <RoutineName>, Event

RoutineName is the name of the event procedure you specify. Event is the returned
event structure, which is returned when a user selects an item from a droplist. The
event structure is of the following type:

{ WIDGET_DROPLIST, ID:0L, TOP:0L, HANDLER:0L, INDEX:0L }

INDEX returns the index of the selected item. This value can be used to index the
array of names originally used to set the widget’s value.

Note
On some platforms, when a droplist widget contains only one item and the user
selects it again, the action does note not generate an event. Events are always
generated on selection actions if the list contains multiple items.
Building IDL Applications Droplist Widget Properties



572 Chapter 21: Using the IDL GUIBuilder
Listbox Widget Properties

The listbox displays a list of text items from which a user can select, by clicking on
them. The listboxes have vertical scroll bars to allow viewing of a long list of items.

When programming in IDL, you create listbox widgets using the WIDGET_LIST
function. For more information, see WIDGET_LIST in the IDL Reference Guide.

Listbox Widget Attributes

For listbox widgets, you can set common attributes and listbox-specific attributes.
For a list of common attributes, see “Common Attributes” on page 540. These are the
listbox widget attributes:

Height

The Height attribute specifies the height of the listbox based on the number of lines
that are visible. The possible values for the attribute are 1 to n. By default, Height is
set to 1, which indicates the default size of one line will be used.

Note that the final size of the widget may be adjusted to include space for scroll bars,
which are not always visible, so the listbox might be slightly larger than specified.

In the generated *.pro file, this value specified with the YSIZE keyword to the
widget creation routine.

Initial Value

The Initial Value attribute specifies the initial list of values that are placed in the list
widget. By default, the list is empty, but you can set this value to a scalar string or a
list of strings. List widgets are sized based on the length (in characters) of the longest
item specified in the array of values.

To enter more than one string in the Value field, type in a string, then press
Control+Enter (at the end of each line). This moves you to the next line. When you
have entered as many strings as you want, press Enter to set the values.

In the generated *.pro file, this value is specified by the VALUE keyword to the
widget creation routine.

Multiple

The Multiple attribute determines if the user can select multiple list items. By default,
the setting is False, which allows for only one selection. To enable multiple list item
Listbox Widget Properties Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 573
selection, set this value to True. Multiple selections are handled using the method
appropriate to the platform the application is running on.

In the generated *.pro file, this value is specified with the MULTIPLE keyword to
the widget creation routine.

Width

The Width attribute specifies the width of the listbox in characters. The possible
values for the attribute are 0 to n. By default, Width is set to 0, which indicates that
default sizing will be used, as long as the Component Sizing attribute is set to default.

By default, IDL sizes widgets to fit the situation. However, if the desired effect is not
produced, use explicit Component Sizing with the Width attribute to set your own
sizing. The final size of the widget may be adjusted to include space for the scroll bar,
which is not always visible, so your widget may be slightly larger than specified.

In the generated *.pro file, this value specified with the XSIZE keyword to the
widget creation routine.

Listbox Widget Events

For listbox widgets, you can set common event properties and listbox-specific event
properties. By default, event values are not set. For a list of events common to all
widgets, see “Common Events” on page 543.

The following is the event property specific to listbox widgets:

OnSelectValue

The OnSelectValue specifies a valid IDL routine name that is called when a list item
is selected. When a user clicks on an item in the listbox to select the item, an event is
generated.

When you set this event value, the calling sequence looks like this in the generated
*_eventcb.pro file:

pro <RoutineName>, Event

RoutineName is the name of the event procedure you specify. Event is the returned
event structure, which is of the following type:

{ WIDGET_LIST, ID:0L, TOP:0L, HANDLER:0L, INDEX:0L, CLICKS:0L }

The first three fields are the standard fields found in every widget event. INDEX
returns the index of the selected item. This index can be used to subscript the array of
names originally used to set the widget’s value. CLICKS returns either 1 or 2,
Building IDL Applications Listbox Widget Properties



574 Chapter 21: Using the IDL GUIBuilder
depending on how the list item was selected. If the list item is double-clicked,
CLICKS is set to 2.

Note
If you are writing a widget application that requires the user to double-click on a list
widget, you will need to handle two events. The CLICKS field will return a 1 on the
first click and a 2 on the second click.
Listbox Widget Properties Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 575
Draw Widget Properties

Draw widgets are rectangular regions that IDL treats as standard graphics windows.
Use draw widgets to display either IDL Direct graphics or IDL Object graphics,
depending on the value of the Graphics Type attribute. You can direct any graphical
output that can be produced by IDL to one of these widgets, either by using the
WSET function or by using the object reference of a draw widget’s IDLgrWindow
object.

Draw widgets can contain scroll bars that allow for viewing of a graphical region
larger than the area containing the widget.

When programming in IDL, you create draw area widgets using the
WIDGET_DRAW function. For more information, see WIDGET_CONTROL in the
IDL Reference Guide.

Draw Area Widget Attributes

For a draw area widget, you can set common attributes and draw area-specific
attributes. For a list of common attributes, see “Common Attributes” on page 540.
These are the draw area-specific attributes:

Color Model

The Color Model attribute specifies the color model that should be used for
displaying information on the draw widget. This attribute value is used only when the
Graphics Type attribute is set to Object, for IDL Object Graphics. These are the
possible values for the Color Model attribute:

• Index: The draw widget’s associated IDLgrWindow object uses indexed color.

• RGB: The RGB color model is used. This is the default value.

In the generated *.pro file, this value is specified by the COLOR_MODEL keyword
to the widget creation routine.

For information on using indexed color in Object Graphics window objects, see
Chapter 20, “Working with Color” in the Using IDL manual.

Colors

The Colors attribute specifies the number of colors that the drawable should attempt
to use from the system color table. This attribute is only valid with the Graphics Type
attribute is set to Direct, for IDL Direct Graphics. By default, the Color attribute is set
to 0, which indicates that IDL will attempt to get all available colors. That is, all or
Building IDL Applications Draw Widget Properties



576 Chapter 21: Using the IDL GUIBuilder
most of the available color indices are allocated, based on the window system in use.
You can set the Colors attribute to any integer, but most values will be in the range of
-256 < n < 256.

This attribute has effect only if it is supplied when the first IDL graphics window is
created. To use monochrome windows on a color display, set the Colors attribute to 2
for the first window. One color table is maintained for all running IDL windows.

In the generated *.pro file, this value is specified by the COLORS keyword to the
widget creation routine.

Graphics Type

The Graphics Type attribute specifies the type of graphics that the draw widget will
support. These are the possible values:

• Direct: The draw widget will display Direct Graphics. This is the default value.
The Colors attribute is used only when Graphics Type is set to Direct.

• Object: The draw widget will display IDL Object Graphics. The Color Model
and Renderer properties are used only when the Graphics Type is set to Object.

In the generated *.pro file, this value is specified with the GRAPHICS_LEVEL
keyword to the widget creation routine.

Renderer

The Renderer attribute specifies which graphics renderer to use with IDL Object
Graphics. That is, for this attribute to be used, the Graphics Type attribute should be
set to Object. These are the possible values for the Renderer attribute:

• OpenGL: The platform’s native OpenGL renderer is used when drawing
objects within the window. If your platform does not have a native OpenGL
implementation, IDL’s software implementation is used as the renderer. This
value is set by default.

• Software: IDL’s software implementation is used when drawing objects within
the window.

In the generated *.pro file, this value is specified by the RENDERER keyword to
the widget creation routine.

For more information, see “Hardware vs. Software Rendering” in Chapter 28 of the
Using IDL manual.
Draw Widget Properties Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 577
Note
The renderer selection can also affect the maximum size of a draw widget.

Retain

The Retain attribute specifies how backing store is performed in the draw area. These
are the possible values:

• None: There is no backing store. When the Retain attribute is set to None, you
should track OnExpose events so that you can handle the redrawing of the
screen. This is the default value.

• System: The server or window system should provide backing store.

• IDL Pixmap: IDL should provide backing store.

In the generated *.pro file, this value is specified with the RETAIN keyword to the
widget creation routine.

For information on the use of the Retain attribute with Direct Graphics, see “Backing
Store” in Appendix B of the IDL Reference Guide. For more information on this
attribute with IDL Object Graphics, see IDLgrWindow::Init in the IDL Reference
Guide.

Scroll

The Scroll attribute specifies if the draw area widget will support scrolling, and will
have scroll bars. By default, this value is set to False, which indicates there are no
scroll bars. To display scroll bars, and enable scrolling, set this value to True. If you
do so, set the size of the scrollable area with the X Scroll and Y Scroll properties.

In the generated *.pro file, this value is specified with the SCROLL keyword to the
widget creation routine.

X Scroll

The X Scroll attribute specifies the width in pixels of the drawing area. This width
includes the exposed and virtual area. By default, this value is not set. You can set X
Scroll to any width from 0 to n. If you set this value, also set the Scroll and Y Scroll
attribute values.

In the generated *.pro file, this value is specified with the XSIZE keyword to the
widget creation routine.
Building IDL Applications Draw Widget Properties



578 Chapter 21: Using the IDL GUIBuilder
Note
To set the width of the displayed widget, use the X Size common attribute.

Y Scroll

The Y Scroll attribute specifies the height in pixels of the drawing area. This height
includes the exposed and virtual area. By default, this value is not set. You can set Y
Scroll to any height in pixels from 0 to n. If you set this value, also set the Scroll and
X Scroll properties.

In the generated *.pro file, this value is specified with the YSIZE keyword to the
widget creation routine.

Note
To set the height of the displayed widget, use the Y Size common attribute.

Draw Area Widget Events

For draw area widgets, you can set common event properties and draw area-specific
event properties. By default, event values are not set. For a list of events common to
all widgets, see “Common Events” on page 543.

These are the draw area event properties:

OnButton

The OnButton value is the routine that is called when a mouse button event is
detected. In the generated *_eventcb.pro file, the calling sequence looks like this:

pro <RoutineName>, Event

RoutineName is the name of the event procedure you specify. Event is the returned
event structure, which is of the following type:

{ WIDGET_DRAW, ID:0L, TOP:0L, HANDLER:0L, TYPE: 0, X:0, Y:0,
PRESS:0B, RELEASE:0B, CLICKS:0 }

Note that this is the same event structure returned for all draw area events; OnButton,
OnExpose, OnMotion, and OnViewportMoved events all return the same structure.
Therefore the following paragraphs describe all these events.

TYPE returns a value that describes the type of draw widget interaction that
generated an event. If there is a button press, it returns 0, and if there is a button
release, it returns 1. If there is motion, it returns 2 (for an OnMotion event). If the
Draw Widget Properties Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 579
viewport moved with the scroll bars, it returns 3 (for an OnViewportMoved event). If
the visibility changes, it returns 4 (for an OnExpose event).

The X and Y fields give the device coordinates at which the event occurred,
measured from the lower left corner of the drawing area.

PRESS and RELEASE are bitmasks in which the least significant bit represents the
left-most mouse button. The corresponding bit of PRESS is set when a mouse button
is pressed, and in RELEASE when the button is released. If the event is a motion
event, both PRESS and RELEASE returns zero.

CLICKS returns either 1 or 2. If the time interval between button-press events is
greater than the time interval for a double-click event for the system, the CLICKS
field returns 1. If the time interval between two button-press events is less than the
time interval for a double-click event for the platform, the CLICKS field returns 2.

OnExpose

The OnExpose value is the routine that is called when the visibility of any portion of
the draw window (or viewport) changes or is exposed. In the generated
*_eventcb.pro file, the calling sequence looks like this:

pro <RoutineName>, Event

RoutineName is the name of the event procedure you specify. Event is the returned
event structure, which is of the following type:

{ WIDGET_DRAW, ID:0L, TOP:0L, HANDLER:0L, TYPE: 0, X:0, Y:0,
PRESS:0B, RELEASE:0B, CLICKS:0 }

Note that this is the same event structure returned for all draw area events; OnButton,
OnExpose, OnMotion, and OnViewportMoved events all return the same structure.
For information on this structure, see OnButton.

OnMotion

The OnMotion value is the routine that is called when a mouse motion event is
detected. In the generated *_eventcb.pro file, the calling sequence looks like this:

pro <RoutineName>, Event

RoutineName is the name of the event procedure you specify. Event is the returned
event structure, which is of the following type:

{ WIDGET_DRAW, ID:0L, TOP:0L, HANDLER:0L, TYPE: 0, X:0, Y:0,
PRESS:0B, RELEASE:0B, CLICKS:0 }
Building IDL Applications Draw Widget Properties



580 Chapter 21: Using the IDL GUIBuilder
Note that this is the same event structure returned for all draw area events; OnButton,
OnExpose, OnMotion, and OnViewportMoved events all return the same structure.
For information on this structure, see OnButton.

OnViewportMoved

The OnViewportMoved value is the routine that is called when the viewport of a
scrolling draw widget is moved, using the scroll bars. In the generated
*_eventcb.pro file, the calling sequence looks like this:

pro <RoutineName>, Event

RoutineName is the name of the event procedure you specify. Event is the returned
event structure, which is of the following type:

{ WIDGET_DRAW, ID:0L, TOP:0L, HANDLER:0L, TYPE: 0, X:0, Y:0,
PRESS:0B, RELEASE:0B, CLICKS:0 }

Note that this is the same event structure returned for all draw area events; OnButton,
OnExpose, OnMotion, and OnViewportMoved events all return the same structure.
For information on this structure, see OnButton.
Draw Widget Properties Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 581
Table Widget Properties

Table widgets display data and allow for data editing by the user. Tables can have
one or more rows and one or more columns.

When programming in IDL, you create table widgets using the WIDGET_TABLE
function. For more information, see WIDGET_TABLE in the IDL Reference Guide.

Table Widget Attributes

For table widgets, you can set common attributes and table-specific attributes. For a
list of common attributes, see “Common Attributes” on page 540. These are the table
widget-specific attributes:

Alignment

The Alignment attribute specifies how the text is aligned in the cells. These are the
possible values:

• Left: The text is left-justified. This is the default value.

• Right: The text is right-justified.

• Center: The text is centered.

In the generated *.pro file, this value is specified with the ALIGNMENT keyword
to the widget creation routine.

Column Labels

The Column Labels attribute specifies the labels for the table columns. By default,
this value is set to empty strings, but you can set it to any set of strings. To set the
labels for table rows, use the Row Labels attribute.

To enter more than one string in the Value field, type in a string, then press
Control+Enter (at the end of each line). This moves you to the next line, or the next
label for a column. When you have entered as many labels as you want, press Enter to
set the values.

In the generated *.pro file, this value is specified with the COLUMN_LABELS
keyword to the widget creation routine.

Display Headers

The Display Headers attribute determines if the table headings, the row and column
labels, are displayed. By default, this value is set to True, indicating that table
Building IDL Applications Table Widget Properties



582 Chapter 21: Using the IDL GUIBuilder
heading should be displayed. To disable the display of table headings, set this value
to False.

In the generated *.pro file, the False value is specified with the NO_HEADERS
keyword to the widget creation routine.

Editable

The Editable attribute determines if the table widget is editable or not. By default,
this value is set to False, which means the text widget is not editable, and the text is
read-only. To make the text widget editable, set this value to True.

In the generated *.pro file, this value is specified with the EDITABLE keyword to
the widget creation routine.

Number of Columns

The Number of Columns attribute specifies the number of columns in the table
widget. This value sets the full, virtual width of the table. By default, it is set to 6.

In the generated *.pro file, this value is specified with the XSIZE keyword to the
widget creation routine.

Note
To have a scrollable table, set the Scroll attribute to True. Then, to specify the
visible size of the table, set the Viewport Columns attribute.

Number of Rows

The Number of Rows attribute specifies the number of rows in the table widget. This
value sets the full, virtual height of the table. By default, it is set to 6.

In the generated *.pro file, this value is specified with the YSIZE keyword to the
widget creation routine.

Note
To have a scrollable table, set the Scroll attribute to True. Then, to specify the
visible size of the table, set the Viewport Columns attribute.

Resize Columns

The Resize Columns attribute determines if this user can resize table columns. By
default, this value is set to True, indicating that the user can resize the columns. To
Table Widget Properties Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 583
specify that the columns of the table are not resizeable by the user, set this value to
False.

In the generated *.pro file, this value is specified with the
RESIZEABLE_COLUMNS keyword to the widget creation routine.

Note
If you set the Display Headers attribute to False, the ability to resize the columns is
automatically disabled.

Row/Column Major

The Row/Column Major attribute specifies how data is transferred to the table
widget, either by Row or by Column. By default, this value is set to Row, indicating
that the data should be read into the table as if each element of the vector is a
structure containing one row’s data. To specify that the data should be read into the
table as if each element of the vector is a structure containing one column’s data, set
this value to Column. Note that for either setting to work properly the structures must
all be of the same type, and must have one field for each column or row in the table.

In the generated *.pro file, this value is specified with the ROW_MAJOR or the
COLUMN_MAJOR keyword to the widget creation routine.

Row Labels

The Row Labels attribute specifies the labels for the table rows. By default, this value
is set to empty strings, but you can set it to any set of strings. To set the labels for
table columns, use the Column Labels attribute.

To enter more than one string in the Value field, type in a string, then press
Control+Enter (at the end of each line). This moves you to the next line, or the next
label for a row. When you have entered as many labels as you want, press Enter to set
the values.

In the generated *.pro file, this value is specified with the ROW_LABELS keyword
to the widget creation routine.

Scroll

The Scroll attribute determines if the table widget has scroll bars. By default, this
value is set to False, indicating that the table will have no scroll bars. To enable scroll
bars, set this value to True. If you set this value to True, you can set the size of the
scrollable region with the Viewport Rows and Viewport Columns properties.
Building IDL Applications Table Widget Properties



584 Chapter 21: Using the IDL GUIBuilder
In the generated *.pro file, this value is specified with the SCROLL keyword to the
widget creation routine.

Viewport Columns

The Viewport Columns attribute specifies the number of columns that should be
visible in the scroll area of the table widget. By default, this value is set to 6.

If you first set the Scroll attribute to True, you can then set this value to any size from
0 to n columns within the limits of your full table size. The full table size, or virtual
width in columns, is set with the Number of Columns attribute.

This attribute is used only when the Component Sizing attribute is set to Default. If
you set the Component Sizing attribute to Explicit, either through the Properties
dialog or by dragging the component to specific size, the Viewport Columns attribute
is ignored, and the X Size and the Y Size properties are used.

In the generated *.pro file, this value is specified with the X_SCROLL_SIZE
keyword to the widget creation routine.

Viewport Rows

The Viewport Rows attribute specifies the number of rows that should be visible in
the scroll area of the table widget. By default, this value is set to 6.

If you first set the Scroll attribute to True, you can then set this value to any size from
0 to n rows, within the limits of your full table size. The full table size, or virtual
height in rows, is set with the Number of Rows attribute.

This attribute is used only when the Component Sizing attribute is set to Default. If
you set the Component Sizing attribute to Explicit, either through the Properties
dialog or by dragging the component to specific size, the Viewport Rows attribute is
ignored, and the X Size and the Y Size properties are used.

In the generated *.pro file, this value is specified with the Y_SCROLL_SIZE
keyword to the widget creation routine.

Table Widget Events

For table widgets, you can set common event properties and table-specific event
properties. By default, event values are not set. For a list of events common to all
widgets, see “Common Events” on page 543.

These are the table widget-specific event properties:
Table Widget Properties Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 585
OnCellSelect

The OnCellSelect value is the routine that is called when cells are selected in the
table. When you set this value, the calling sequence looks like this in the generated
*_eventcb.pro file:

pro <RoutineName>, Event

RoutineName is the name of the event procedure you specify. Event is the returned
event structure, which is returned when range of cells is selected or deselected and is
of the following type:

{ WIDGET_TABLE_CELL_SEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:4,
SEL_LEFT:0L, SEL_TOP:0L, SEL_RIGHT:0L, SEL_BOTTOM:0L }

The range of cells selected is given by the zero-based indices into the table specified
by the SEL_LEFT, SEL_TOP, SEL_RIGHT, and SEL_BOTTOM fields. When cells
are deselected, either by changing the selection or by clicking in the upper left corner
of the table, an event is generated in which the SEL_LEFT, SEL_TOP, SEL_RIGHT,
and SEL_BOTTOM fields contain the value -1.

Note
Two WIDGET_TABLE_CELL_SEL events are generated when an existing
selection is changed to a new selection. If your code uses this event, be sure to
differentiate between select and deselect events.

OnColWidth

The OnColWidth value is the routine that is called when the column width is
changed. When you set this value, the calling sequence looks like this in the
generated *_eventcb.pro file:

pro <RoutineName>, Event

RoutineName is the name of the event procedure you specify. Event is the returned
event structure, which is returned when a column width is changed by the user and is
of the following type:

{ WIDGET_TABLE_COLUMN_WIDTH, ID:0L, TOP:0L, HANDLER:0L, TYPE:7,
COLUMN:0L, WIDTH:0L }

COLUMN contains the zero-based column number, and WIDTH contains the new
width.
Building IDL Applications Table Widget Properties



586 Chapter 21: Using the IDL GUIBuilder
OnDelete

The OnDelete value is the routine that is called when text is deleted from the table.
When you set this value, the calling sequence looks like this in the generated
*_eventcb.pro file:

pro <RoutineName>, Event

RoutineName is the name of the event procedure you specify. Event is the returned
event structure, which is returned when any amount of text is deleted from a cell of a
table widget and is of the following type:

{ WIDGET_TABLE_DEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:2, OFFSET:0L,
LENGTH:0L, X:0L, Y:0L }

OFFSET is the (zero-based) character position of the first character deleted, and it is
the insertion position that will result when the next character is inserted. LENGTH
gives the number of characters involved. The X and Y fields give the zero-based
address of the cell within the table.

OnFocus

The OnFocus value is the routine that is called when the keyboard focus of the base
changes. When you set it, the calling sequence looks like this in the generated
*_eventcb.pro file:

pro <RoutineName>, Event

RoutineName is the name of the event procedure you specify. Event is the returned
event structure, which is of the following type:

{ WIDGET_KBRD_FOCUS, ID:0L, TOP:0L, HANDLER:0L, ENTER:0 }

ENTER returns 1 (one) if the table widget is gaining the keyboard focus, or 0 (zero) if
the table widget is losing the keyboard focus.

OnInsertChar

The OnInsertChar value is the routine that is called when text is inserted in the table.
When you set this value, the calling sequence looks like this in the generated
*_eventcb.pro file:

pro <RoutineName>, Event

RoutineName is the name of the event procedure you specify. Event is the returned
event structure, which is returned when a single character is typed into a cell of a
table widget and is of the following type:

{ WIDGET_TABLE_CH, ID:0L, TOP:0L, HANDLER:0L, TYPE:0, OFFSET:0L,
CH:0B, X:0L, Y:0L }
Table Widget Properties Building IDL Applications



Chapter 21: Using the IDL GUIBuilder 587
OFFSET is the (zero-based) insertion position that will result after the character is
inserted. CH is the ASCII value of the character. The X and Y fields indicate the
zero-based address of the cell within the table.

OnInsertString

The OnInsertString value is the routine that is called when text is inserted in the table.
When you set this value, the calling sequence looks like this in the generated
*_eventcb.pro file:

pro <routinename>, Event

RoutineName is the name of the event procedure you specify. Event is the returned
event structure, which is returned when multiple characters are pasted into a cell and
is of the following type:

{ WIDGET_TABLE_STR, ID:0L, TOP:0L, HANDLER:0L, TYPE:1, OFFSET:0L,
STR:'', X:0L, Y:0L }

OFFSET is the (zero-based) insertion position that will result after the text is inserted.
STR is the string to be inserted. The X and Y fields indicate the zero-based address of
the cell within the table.

OnInvalidData

The OnInValidData value is the routine that is called when invalid data is set in a cell.
When you set this value, the calling sequence looks like this in the generated
*_eventcb.pro file:

pro <RoutineName>, Event

RoutineName is the name of the event procedure you specify. Event is the returned
event structure, which is returned when the text entered by the user does not pass
validation, and the user has finished editing the field (by pressing Tab or Enter). The
event structure is of the following type:

{ WIDGET_TABLE_INVALID_ENTRY, ID:0L, TOP:0L, HANDLER:0L, TYPE:8,
STR:'', X:0L, Y:0L }

STR contains invalid contents entered by the user as a text string. The X and Y fields
contain the cell location.

OnTextSelect

The OnTextSelect value is the routine that is called when text is selected in the table.
When you set this value, the calling sequence looks like this in the generated
*_eventcb.pro file:

pro <RoutineName>, Event
Building IDL Applications Table Widget Properties



588 Chapter 21: Using the IDL GUIBuilder
RoutineName is the name of the event procedure you specify. Event is the returned
event structure, which is returned when an area of text is selected. The event structure
is of the following type:

{WIDGET_TABLE_TEXT_SEL, ID:0L, TOP:0L, HANDLER:0L, TYPE:3,
OFFSET:0L, LENGTH:0L, X:0L, Y:0L}

This event announces a change in the insertion point. OFFSET is the (zero-based)
character position of the first character to be selected. LENGTH gives the number of
characters involved. A LENGTH of zero indicates that the widget has no selection,
and that the insertion position is given by OFFSET. The X and Y fields indicate the
zero-based address of the cell within the table.
Table Widget Properties Building IDL Applications



Chapter 22:

Widgets
The following topics are covered in this chapter:
Overview . . . . . . . . . . . . . . . . . . . . . . . . . .  590
Widget Types . . . . . . . . . . . . . . . . . . . . . . .  592
Manipulating Widgets . . . . . . . . . . . . . . . .  597
Examples of Widget Programming . . . . . .  598
The Widget Application Model  . . . . . . . .  599
Creating Widget Applications . . . . . . . . . .  602
Widget Example 1 . . . . . . . . . . . . . . . . . . .  605
Widget Values . . . . . . . . . . . . . . . . . . . . . .  607
Widget User Values . . . . . . . . . . . . . . . . . .  610
Widget Events . . . . . . . . . . . . . . . . . . . . . .  611
Widget Example 2 . . . . . . . . . . . . . . . . . . .  617

Using Draw Widgets  . . . . . . . . . . . . . . . . . 619
Creating Menus  . . . . . . . . . . . . . . . . . . . . . 621
Controlling Widgets . . . . . . . . . . . . . . . . . . 626
Widget Example 3  . . . . . . . . . . . . . . . . . . . 629
Widget Sizing . . . . . . . . . . . . . . . . . . . . . . . 631
Event Processing And Callbacks . . . . . . . . 637
Managing Widget Application State  . . . . . 640
Compound Widgets . . . . . . . . . . . . . . . . . . 642
Tips on Creating Widget Applications . . . . 644
Compound Widget Example  . . . . . . . . . . . 646
Building IDL Applications 589



590 Chapter 22: Widgets
Overview

IDL allows you to construct and manipulate graphical user interfaces using widgets.
Widgets (or controls, in the terminology of some development environments) are
simple graphical objects such as pushbuttons or sliders that allow user interaction via
a pointing device (usually a mouse) and a keyboard. This style of graphical user
interaction offers many significant advantages over traditional command-line based
systems.

IDL widgets are significantly easier to use than other alternatives, such as writing a C
language program using the native window system directly. IDL handles much of the
low-level work involved in using such toolkits. The interpretive nature of IDL makes
it easy to prototype potential user interfaces. In addition to the user interface, the
author of a program written in a traditional compiled language also must implement
any computational and graphical code required by the program. IDL widget programs
can draw on the full computational and graphical abilities of IDL to supply these
components.

The style of widgets IDL creates depends on the windowing system supported by
your host computer. Unix and VMS hosts use Motif widgets, while Microsoft
Windows and Macintosh systems use their native toolkits. Although the different
toolkits produce applications with a slightly different look and feel, most properly-
written widget applications work on all systems without change.

IDL graphical user interfaces are constructed by combining widgets in a treelike
hierarchy. Each widget has one parent widget and zero or more child widgets. There
is one exception: the topmost widget (called a top-level base) is always a base widget
and has no parent.

Programs that use widgets are event driven. In an event driven system, the program
creates an interface and then waits for messages (events) to be sent to it from the
window system. Events are generated in response to user manipulation, such as
pressing a button or moving a slider. The program responds to events by carrying out
the action or computation specified by the programmer, and then waiting for the next
event. This approach to computing is fundamentally different from the traditional
command-based approach.

Note
You can use the IDL GUIBuilder to create user interfaces interactively. The IDL
GUIBuilder allows you to create and interface rapidly and generate the IDL source
code to create the interface. For information, see Chapter 21, “Using the
IDL GUIBuilder”.
Overview Building IDL Applications



Chapter 22: Widgets 591
Running the Example Code

The example code used in this chapter is part of the IDL distribution. All of the files
mentioned are located in the examples/doc subdirectory of the IDL distribution.
By default, this directory is part of IDL’s path; if you have not changed your path, you
will be able to run the examples as described here. See !PATH in the IDL Reference
Guide for information on IDL’s path.
Building IDL Applications Overview



592 Chapter 22: Widgets
Widget Types

IDL supports two types of widgets. Widget primitives are the base interface elements.
Compound widgets are more complex interface elements built in the IDL language
from the widget primitives. In addition, there are a number of dialogs which are
widget-like but which do not belong to a widget hierarchy.

Widget Primitives

Widget primitives are created by functions with names like WIDGET_BASE and
WIDGET_BUTTON. IDL provides the following widget primitives:

Base

A base is a widget used to hold other widgets, including other base widgets. Base
widgets can optionally contain scroll bars that allow the base to be larger than the
space on the screen. In this case, only part of the base is visible at any given time, and
the scroll bars are used to control which part is visible.

Base widgets are created by the WIDGET_BASE function. See WIDGET_BASE in
the IDL Reference Guide for more information.

Top-level bases are a special class of base widget created without a parent widget ID.
Top-level bases can be organized into an application hierarchy by specifying the
GROUP_LEADER keyword. Top-level bases can be made to float above their group
leaders (via the FLOATING keyword), or can be created as modal bases (via the
MODAL keyword) that interrupt program execution until the user performs some
action. See “The Widget Application Model” on page 599 for additional discussion
of widget applications.

Button

A pushbutton is activated by moving the mouse cursor over the button and pressing a
mouse button. Button widgets are created by the WIDGET_BUTTON function. See
WIDGET_BUTTON in the IDL Reference Guide for more information.

Draw

Draw widgets offer a rectangular area that works like a standard IDL graphics
window. Draw widgets can use either Direct graphics or Object graphics, depending
on how they are created. Any graphical output that can be produced by IDL can be
directed to one of these widgets, either through the WSET function or by using the
object reference of a draw widget’s IDLgrWindow object. Draw widgets can
optionally contain scrollbars that allow examining a graphical region larger than the
Widget Types Building IDL Applications



Chapter 22: Widgets 593
area containing the widget. Draw widgets are created by the WIDGET_DRAW
function. See WIDGET_DRAW in the IDL Reference Guide for more information.

Droplist

Droplist widgets display a single entry from a list of options. When selected, they
reveal the entire list. When a new option is selected from this list, the list disappears
and the new selection is displayed. On systems using the Motif window system,
Droplist widgets look like buttons with labels that change depending on the item
selected from the drop-down list. Droplist widgets are created by the
WIDGET_DROPLIST function. See WIDGET_DROPLIST in the IDL Reference
Guide for more information.

Label

Label widgets display static text. They are similar to single-line text widgets but are
optimized for small labeling purposes. Text widgets should be used to display large
amounts of text. Label widgets are created by the WIDGET_LABEL function. See
WIDGET_LABEL in the IDL Reference Guide for more information.

List

A list widget offers the user a list of text elements from which to choose. Users can
select an item by pointing with the mouse cursor and pressing a button. List widgets
have a vertical scrollbar when there are more list items than are specified in the
Height property. List widgets are created by the WIDGET_LIST function. See
WIDGET_LIST in the IDL Reference Guide for more information.

Slider

Slider widgets are used to select or indicate a value within a range of possible integer
values. They consist of a rectangular region that represents the possible range of
values. Inside this region is a sliding pointer that displays the current value. This
pointer can be manipulated by the user via the mouse or from within IDL by the
WIDGET_CONTROL procedure. Slider widgets are created by the
WIDGET_SLIDER function. See WIDGET_SLIDER in the IDL Reference Guide
for more information.

Table

Table widgets are used to display information in tabular format. Individual table cells
(or ranges of cells) can be selected for editing by the user. Table widgets are created
by the WIDGET_TABLE function. See WIDGET_TABLE in the IDL Reference
Guide for more information.
Building IDL Applications Widget Types



594 Chapter 22: Widgets
Text

Text widgets are used to display text and to get text input from the user. They can
have one or more lines and can optionally contain scroll bars that allow viewing more
text than can otherwise be displayed. Text widgets are created by the
WIDGET_TEXT function. See WIDGET_TEXT in the IDL Reference Guide for
more information.

Compound Widgets

A compound widget is a complete, self-contained, reusable widget sub-tree that
behaves to a large degree just like a widget primitive, but which is written in the IDL
language. Compound widget routines can be found (along with many other routines
that use the widgets) in the lib subdirectory of the IDL distribution. All compound
widget filenames begin with “CW_” to make them easier to identify. The following
types of compound widgets are included in the IDL distribution.

Animation

The CW_ANIMATE compound widget — along with its associated routines —
displays an animated sequence of images. See CW_ANIMATE in the IDL Reference
Guide.

Color Manipulation

The CW_CLR_INDEX compound widget displays a color bar and allows the user to
select a color index. See CW_CLR_INDEX in the IDL Reference Guide.

The CW_COLORSEL compound widget displays all the colors in the current
colormap and allows the user to select color indices. See CW_COLORSEL in the
IDL Reference Guide.

The CW_RGBSLIDER compound widget allows the user to adjust color values using
the RGB, CMY, HSV, and HLS color systems. See CW_RGBSLIDER in the IDL
Reference Guide.

Data Entry and Display

The CW_FIELD compound widget simplifies building data-entry interfaces by
combining label and text widgets. See CW_FIELD in the IDL Reference Guide.

The CW_FORM compound widget allows you to create simple forms with text,
numeric fields, buttons, and droplists. See CW_FORM in the IDL Reference Guide.
Widget Types Building IDL Applications



Chapter 22: Widgets 595
Image Manipulation

The CW_DEFROI compound widget allows you to specify a region of interest within
a draw widget. See CW_DEFROI in the IDL Reference Guide.

The CW_ZOOM compound widget displays original and zoomed images side-by-
side. See CW_ZOOM in the IDL Reference Guide.

Orientation

The CW_ARCBALL compound widget allows the user to intuitively specify three-
dimensional orientations. See CW_ARCBALL in the IDL Reference Guide.

The CW_ORIENT compound widget allows the user to interactively adjust the three-
dimensional drawing transformation. See CW_ORIENT in the IDL Reference Guide.

User Interface

The CW_BGROUP compound widget simplifies creation of a cluster of buttons.
Button groups can be simple menus in which each button acts independently,
exclusive groups (also known as “radio buttons”), or non-exclusive groups (often
called “checkboxes”). See CW_BGROUP in the IDL Reference Guide.

The CW_FSLIDER compound widget is a version of the slider widget that handles
floating-point values. See CW_FSLIDER in the IDL Reference Guide.

The CW_PDMENU compound widget creates pulldown menus, which can include
sub-menus, from a set of buttons. See CW_PDMENU in the IDL Reference Guide.

See “Writing Compound Widgets” on page 642 for information on writing your own
compound widgets.

Dialogs

A dialog is a widget-like user interface element that is not part of a widget hierarchy.
Dialogs are modal (or “blocking”) elements, which means that when a dialog is
displayed, no other interface elements (widgets or compound widgets) can be
manipulated until the user dismisses the dialog.

File and Directory Selection

File selection dialogs allow you to choose a file or directory via a graphical interface.
The DIALOG_PICKFILE function returns the string containing the name of the
selected file. See DIALOG_PICKFILE in the IDL Reference Guide for more
information.
Building IDL Applications Widget Types



596 Chapter 22: Widgets
Message

Message dialogs are modal (or “blocking”) dialog boxes that can display warnings,
informational messages, or error messages. When a message dialog is displayed, no
widgets can be manipulated until the user dismisses the dialog by clicking on one of
its buttons. Message dialogs do not belong to widget hierarchies; they are instantly
created when the DIALOG_MESSAGE function is called and block all widget
activity until dismissed. See DIALOG_MESSAGE in the IDL Reference Guide for
more information.

Printing

IDL provides two dialogs for controlling printing. DIALOG_PRINTJOB opens a
native dialog that allows you to set the parameters for a printing job (such as the
number of copies to print). DIALOG_PRINTERSETUP opens a native dialog for
setting the applicable properties for a particular printer. See DIALOG_PRINTJOB
and DIALOG_PRINTERSETUP in the IDL Reference Guide for more information.
Widget Types Building IDL Applications



Chapter 22: Widgets 597
Manipulating Widgets

Widgets are controlled via their widget IDs. The widget ID is a long integer assigned
to the widget when it is first created. In practice, the widget ID of a widget is
contained in a named variable that you assign when you call the widget creation
function. For example, you might create a base widget with the following IDL
command:

base = WIDGET_BASE()

Here, the IDL variable base contains the widget ID of the top-level widget base that
is created.

IDL provides several routines that allow you to manipulate and manage widgets:

• WIDGET_CONTROL allows you to realize (make visible on your screen)
widget hierarchies, manipulate them, and destroy them when you are finished.

• WIDGET_EVENT allows you to process events generated by a specific
widget hierarchy.

• WIDGET_INFO allows you to obtain information about the state of a specific
widget or widget hierarchy.

• XMANAGER provides an event loop and manages events generated by a
widget hierarchy.

• XREGISTERED allows you to test whether a specific widget is currently
registered with XMANAGER.

These widget manipulation routines are discussed in more detail in the following
sections.
Building IDL Applications Manipulating Widgets



598 Chapter 22: Widgets
Examples of Widget Programming

A number of simple examples of widget programming can be seen by running the
IDL program examples.pro, which can be found in the /examples/misc folder
of the IDL distribution. A widget interface with a pulldown menu of small widget
applications should appear.
Examples of Widget Programming Building IDL Applications



Chapter 22: Widgets 599
The Widget Application Model

Using widgets, you can create entire IDL applications with graphical user interfaces.
Although widget applications are running “inside” IDL, a well-designed program can
behave and appear just like a stand-alone application.

A widget application consists of a group of top-level bases organized hierarchically.
Groups of widgets are defined by setting the GROUP_LEADER keyword when
creating the widget. Group membership controls how and when widgets are iconized,
which layer they appear in, and when they are destroyed.

The following figure depicts a widget application group hierarchy consisting of six
top-level bases in three groups: base 1 leads all six bases, base 2 leads bases 4 and 5,
and base 3 leads base 6. What does this mean? Operations that affect base 2 also
affect bases 4 and 5. Operations that affect base 3 also affect base 6. Operations that
affect base 1 affect all six bases—that is, a group includes not only those bases that
explicitly claim one base as their leader, but also all bases led by those member bases.

The following IDL commands would create this hierarchy:

base1 = WIDGET_BASE()
base2 = WIDGET_BASE(GROUP_LEADER=base1)

Figure 22-1: A widget application group hierarchy with six top-level bases.
Building IDL Applications The Widget Application Model



600 Chapter 22: Widgets
base3 = WIDGET_BASE(GROUP_LEADER=base1)
base4 = WIDGET_BASE(GROUP_LEADER=base2)
base5 = WIDGET_BASE(GROUP_LEADER=base2)
base6 = WIDGET_BASE(GROUP_LEADER=base3)

Iconization

On Motif and Windows platforms, bases and groups of bases can be iconized (or
minimized) by clicking the system minimize control. When a group leader is
iconized, all members of the group are minimized as well. Minimization has no
meaning on the Macintosh.

Layering

Layering is the process by which groups of widgets seem to share the same plane on
the display screen. Within a layer on the screen, widgets have a Z-order, or front-to-
back order, that defines which widgets appear to be on top of other widgets.

All widgets within a group hierarchy share the same layer—that is, when one group
member has the input focus, all members of the group hierarchy are displayed in a
layer that appears in front of all other groups or applications. Within the layer, the
widgets can have an arbitrary Z-order.

Destruction

When a group leader widget is destroyed, either programmatically or by clicking on
the system “close” button, all members of the group are destroyed as well.

See Iconizing, Layering, and Destroying Groups of Top-Level Bases under
WIDGET_BASE in the IDL Reference Guide for detailed information on how group
membership defines widget behavior on different platforms.

Floating bases

Top-level base widgets created with the FLOATING keyword set will float above
their group leaders, even though they share the same layer. Floating bases and their
group leaders are iconized in a single icon (on platforms where iconization is
possible). Floating bases are destroyed when their group leaders are destroyed.

Modal bases

Top-level base widgets created with the MODAL keyword will float above their
group leaders, and will suspend processing in the widget application until they are
dismissed. (Dialogs are generally modal.) Modal bases cannot be iconized, and on
some platforms other bases cannot be moved or iconized while the modal dialog is
present. Modal bases cannot have scroll bars or menubars.
The Widget Application Model Building IDL Applications



Chapter 22: Widgets 601
Menubars

Widget applications can have an application-specific menubar, created by the
APP_MBAR keyword to WIDGET_BASE. Currently, application menubars are
equivalent to individual menubars created by the MBAR keyword on Motif and
Windows platforms. On the Macintosh, the menubar defined by APP_MBAR “takes
over” the Macintosh system menubar, while menubars defined by MBAR are
included on an individual top-level base widget.
Building IDL Applications The Widget Application Model



602 Chapter 22: Widgets
Creating Widget Applications

An application using widgets goes through the following cycle:

Construct the Widget Hierarchy

You must first build a widget hierarchy. Start with one or more top-level bases
(created with the WIDGET_BASE function) in a hierarchy described by
GROUP_LEADER relationships. Combine other widget creation functions —
WIDGET_BUTTON, CW_PDMENU, etc. — to create and organize the user
interface of your widget application. At this point, the widgets exist only within
IDL—nothing has been created or displayed on the window system.

Provide an Event-Handling Routine

In order for a widget application to do anything, you must provide a routine that
examines events, determines what action to take, and implements the action. Actions
may involve computation, graphics display, or updating the widget interface itself.

For the best performance, it is important that the program spend most of its time in
the event loop provided by the event handling routine. Some widgets will not respond
rapidly to user manipulation when not in this loop. Widget-based programs should
wait for user-generated events, handle them as quickly as possible, and quickly return
to wait for more events. Event processing is discussed in detail in “Widget Events” on
page 611 and in “Event Processing And Callbacks” on page 637.

Event handling routines can use the WIDGET_CONTROL procedure to manipulate
widgets. Possible actions include the following:

• Obtain or change the value of a widget (see “Widget Values” on page 607)
using the APPEND, GET_VALUE, and SET_VALUE keywords.

• Obtain or change the value of a widget’s user value (discussed in “Widget User
Values” on page 610) using the GET_UVALUE and SET_UVALUE
keywords.

• Map and unmap widgets using the MAP keyword. Unmapped widgets are
removed from the screen and become invisible, but they still exist.

• Change a widget’s sensitivity using the SENSITIVE keyword. When a widget
is insensitive, it indicates the fact by changing its appearance (often by graying
itself or displaying text with dashed lines) and ignores any user input. It is
useful to make widgets insensitive at points where it would be inconvenient to
get events from them (for example, if your program is waiting for input from
another source).
Creating Widget Applications Building IDL Applications



Chapter 22: Widgets 603
• Change the settings of toggle buttons using the SET_BUTTON keyword.

• Push a widget hierarchy behind the other windows on the screen, or pull them
in front using the SHOW keyword.

• If you expect an operation to be slow, display the “hourglass” cursor while the
application is busy and not able to respond to user actions by setting the
HOURGLASS keyword.

Realize the Widgets

Bring the widget hierarchy into existence using the REALIZE keyword to the
WIDGET_CONTROL procedure. This causes the widgets to be created and
displayed.

Register the Program with the XMANAGER

Register the program with the XMANAGER procedure. Your widget application then
waits for events to be reported to it and reacts as specified in the event handling
routine.

Events are obtained by XMANAGER via the WIDGET_EVENT function and passed
to the calling routine (your event handler) in the form of an IDL structure variable.
Each type of widget returns a different type of structure, the exact form of which is
described in the documentation for the individual widget creation functions in the
IDL Reference Guide. However, every event structure has the same first three
elements. These are long integers named ID, TOP, and HANDLER. ID is the widget
ID of the widget generating the event. TOP is the widget ID of the top-level base
containing ID. HANDLER is important for event handler functions, which are
discussed later in this chapter.

When an event appears, XMANAGER passes it to an event-handling procedure
specified by the program, and the event handler takes some appropriate action based
on the event. This means that multiple widget applications can run simultaneously —
XMANAGER dispatches the events to the appropriate routine.

Destroy the Widgets

When the application has finished (usually when the user clicks on a “Done” or
“Quit” button), destroy the widget hierarchy using the WIDGET_CONTROL
procedure’s DESTROY keyword. This causes all resources related to the hierarchy to
be freed and removes it from the screen.
Building IDL Applications Creating Widget Applications



604 Chapter 22: Widgets
Handling Widget Application Errors

At times, widget applications may experience errors that stop the processing of
widget events by XMANAGER. This is most common during the development of the
application, when unexpected programming errors are likely to appear.

By default, XMANAGER catches errors and continues processing (see CATCH in
the IDL Reference Guide). If you are using XMANAGER to manage your widget
application (as in most cases you should), have explicitly set CATCH=0, and the
widget stops responding, error messages appear in your command log, and the IDL
command prompt reappears, do the following:

1. Enter RETALL at the IDL prompt to return to the main program level.

2. Enter XMANAGER at the IDL prompt. Calling XMANAGER with no parameters
tells it to skip registering a new application and to simply resume event
processing.

Note
If you do not restart XMANAGER, widget applications will not respond even if
you recompile.
Creating Widget Applications Building IDL Applications



Chapter 22: Widgets 605
Widget Example 1

The following example demonstrates the simplicity of widget programming. It
creates a base widget containing a single button, labelled “Done.” When you position
the mouse cursor over the button and click, the widget is destroyed.

Enter the two procedures listed below — either in a text file named widget1.pro,
or directly into IDL using the .RUN command. Enter widget1 at the IDL prompt to
run the program.

PRO widget1_event, ev
IF ev.select THEN WIDGET_CONTROL, ev.top, /DESTROY
END

PRO widget1
base = WIDGET_BASE()
button = WIDGET_BUTTON(base, value='Done')
WIDGET_CONTROL, base, /REALIZE
XMANAGER, 'Widget1', base
END

Alternately, you can run the program from the IDL distribution by entering:

widget1

at the IDL command prompt. See “Running the Example Code” on page 591 if IDL
does not run the program as expected.

While this simple example does nothing particularly useful, it does illustrate some
basic concepts of event-driven programming. Let’s examine how the example is
constructed.

First, note that the “application” consists of two parts; an event handling routine and a
creation routine. First, let’s examine the second part — the creation routine —
contained in the widget1 procedure.

The widget1 procedure does the following:

1. Creates a top-level base widget named base. All widget applications have at
least one base.

2. Creates a button widget named button with base as its parent. The value
“Done” is assigned to the button. The value of a button widget is the text that
appears on the button’s face.
Building IDL Applications Widget Example 1



606 Chapter 22: Widgets
3. Realizes the widget hierarchy built on base by calling WIDGET_CONTROL
with the /REALIZE keyword. This causes the widget to appear on your
computer screen.

4. Invokes the XMANAGER routine to manage the widget event loop, providing
the name of the calling routine (widget1) and the name of the top-level base
the widget hierarchy is built on (base).

The first part, contained in the widget1_event procedure, is the event handling
routine for the application. By convention, the XMANAGER procedure looks for an
event handling procedure with the same name as the procedure that creates the
widgets, with “_event” appended to the end. (This default can be overridden by
specifying an event handler directly using the EVENT_HANDLER keyword to
XMANAGER.) When an event is received by XMANAGER, the event structure is
passed to the widget1_event procedure via the ev argument.

In this example, all the event handling routine does is check to see if the event passed
to it was a select event, which is part of the event structure generated by the button
widget. If a select event is received, the routine calls WIDGET_CONTROL with the
DESTROY keyword to destroy the widget hierarchy built on the top-level base
widget that contains the button widget (specified in the top field of the event
structure).

For further discussion of widget events and event structures, see “Widget Events” on
page 611. For details about the event structures returned by different widgets, see the
documentation for each widget in the IDL Reference Guide.
Widget Example 1 Building IDL Applications



Chapter 22: Widgets 607
Widget Values

Many widget primitives have values associated with them. Initial values are set using
the VALUE keyword to the widget creation function. The value can be obtained
and/or changed at any time using the GET_VALUE and SET_VALUE keywords to
the WIDGET_CONTROL procedure. Widgets with a value are listed below.

Button

Type: Scalar string (text) or byte array (bitmap). The value is the button label. The
GET_VALUE keyword cannot be used to obtain bitmaps.

To specify text as a button label, use the VALUE keyword as follows:

button = WIDGET_BUTTON(base, VALUE='Text')

To specify a bitmap as a button label, use the VALUE keyword as follows:

button = WIDGET_BUTTON(base, VALUE='mybitmap.bmp', /BITMAP)

Note that when specifying a bitmap as a button label, you must use the BITMAP
keyword.

Draw

Type: Integer. For draw widgets created using Direct Graphics, the value is the IDL
window number for use with direct graphics routines, such as WSET. For draw
widgets created using Object Graphics, the value is the object reference to the
IDLgrWindow object. This value cannot be set or modified. See “Using Draw
Widgets” on page 619.

Label

Type: Scalar string. The value is the label text.

List or Droplist

Type: Scalar string or string array. The value represents the list elements. This value
can only be set; it cannot be retrieved.

Slider

Type: Integer. The value is the current slider position.

Table

Type: Any data type or types, organized either in a two-dimensional array or as a
vector of structures. The value is the contents of the table.
Building IDL Applications Widget Values



608 Chapter 22: Widgets
If the value is specified as a two-dimensional array, all data must be of the same type.

If the value is specified as a vector of structures, all of the structures must have the
same structure definition. Individual fields within the structures can be of any data
type. The structures must contain one field for each column (if the
COLUMN_MAJOR keyword to WIDGET_TABLE is set) or one field for each row
(if the ROW_MAJOR keyword to WIDGET_TABLE is set, or if neither keyword is
set).

Text

Type: Scalar string or string array. The value is the contents of the text widget. When
setting this value, the APPEND keyword to WIDGET_CONTROL causes the new
text to be appended to the old text instead of replacing it.

Widget Values of Compound Widgets

Many compound widgets also have associated values. Initial values can often be
specified using the VALUE keyword to the creation routine. Note, however, that in
some cases widget values of compound widgets cannot be set until after the widget is
realized; values are thus set, obtained, or changed using the GET_VALUE and
SET_VALUE keywords to the WIDGET_CONTROL procedure. See the
documentation for the individual compound widget creation routines in the IDL
Reference Guide for more detailed information. Compound widgets with a value are
listed below:

CW_ARCBALL

Type: 3 by 3 array. The value is the three-dimensional rotation matrix.

CW_BGROUP

Type: Integer or Vector. For “normal” button groups, there is no value. For exclusive
button groups, the value is the integer index of the selected button. For non-exclusive
button groups, the value is a vector indicating which buttons are selected. The initial
value of a button group can be set using the SET_VALUE keyword to
CW_BGROUP.

CW_CLR_INDEX

Type: Integer. The value is the index of the color selected. The value cannot be set
before the widget is realized.
Widget Values Building IDL Applications



Chapter 22: Widgets 609
CW_COLORSEL

Type: Integer. The value is the index of the color selected. The value cannot be set
before the widget is realized.

CW_FIELD

Type: String. The value is the string value of the text portion of the field widget.

CW_FORM

Type: Structure. The value is a structure of tag/value pairs for each field in the form.
The value cannot be set before the widget is realized.

CW_FSLIDER

Type: Floating-point number. The value is the numeric value of the slider.

CW_ZOOM

Type: byte array. The value is the current array displayed. Note that you must use the
SET_VALUE keyword to WIDGET_CONTROL to display the original image.
Building IDL Applications Widget Values



610 Chapter 22: Widgets
Widget User Values

Every widget primitive and compound widget has the potential to carry a user-
specified value of any IDL data type and organization. That is, every widget contains
a variable that can store arbitrary information. This value is ignored by the widget
and is for the programmer’s convenience only.

The initial user value is specified using the UVALUE keyword to the widget creation
function. If no initial value is specified, the user value is undefined. Once the widget
exists, its user value can be examined and/or changed using the GET_UVALUE and
SET_UVALUE keywords to the WIDGET_CONTROL procedure. The widget user
value should not be confused with the concept of widget values described above.

User Values Simplify Event Handling

User values can be used to simplify event-handling. If each widget in a widget
hierarchy has a distinct user value, you need only check the user value of any event to
determine which widget generated it. In practice, this means you do not need to keep
track of the widget IDs of all the widgets in your widget hierarchy in order to
determine what to do with a given event.

User Values Can Simulate Global Variables

Another use for user variables is to simulate a variable that is “known” in more than
one IDL routine. For example, you can set the user value of a top-level base widget
equal to one or more widget IDs. You then have an easy way to “import” the widget
IDs from your widget creation routine into your event handling routine.

We will take advantage of both of these aspects of user values in our next example,
“Widget Example 2” on page 617.
Widget User Values Building IDL Applications



Chapter 22: Widgets 611
Widget Events

The concept of events and event processing underlies every aspect of widget
programming. It is important to understand how IDL handles widget events in order
to use widgets effectively.

What are Widget Events?

A widget event is a message returned from the window system as the result of user
interactions such as pressing a button or otherwise manipulating a widget. In
response to an event, a widget program usually performs some action for the user
(e.g., opens a file, updates a plot).

Structure of Widget Events

As events arrive from the window system, IDL saves them in a queue for the target
widget. They are delivered to the IDL program as IDL structures by the
WIDGET_EVENT function. Every widget event structure has the same first three
fields: these are long integers named ID, TOP, and HANDLER.

• ID is the widget ID of the widget generating the event.

• TOP is the widget ID of the top-level base containing ID.

• HANDLER is the widget ID of the widget associated with the event handling
routine. The importance of HANDLER will become apparent when we discuss
event routines and compound widgets, below.

Event structures for different widgets may contain other fields as well. The exact
form of the event structure for any given widget is described in the documentation for
that widget’s creation function in the IDL Reference Guide.

Processing Widget Events

All widget event processing in IDL is handled by the WIDGET_EVENT function.
Note that while we will discuss WIDGET_EVENT here for completeness, in most
cases you will not want to call WIDGET_EVENT directly. The XMANAGER
routine provides a convenient, simplified interface to WIDGET_EVENT and allows
IDL to take over the task of managing multiple widget applications.

Calling the WIDGET_EVENT Function

In its simplest form, the WIDGET_EVENT function is called with a widget ID
(usually, the ID of a widget base) as its argument. WIDGET_EVENT checks the
Building IDL Applications Widget Events



612 Chapter 22: Widgets
queue of undelivered events for that widget or any of its children. If an event is
present, it is immediately dequeued and returned. If no event is available,
WIDGET_EVENT blocks until one arrives and then returns it. Typically, the request
is made for a top-level base, so WIDGET_EVENT returns events for any widget in
that widget hierarchy (also called a widget tree).

This simple usage suffers from a major weakness. Since each call to
WIDGET_EVENT is looking for events from a specified widget hierarchy, it is not
possible to receive events for more than one widget hierarchy at a time. It is
important to be able to run multiple widget applications (each with a separate top-
level base) simultaneously. An example would be an image processing application, a
colortable manipulation tool, and an on-line help reader all running together.

One solution to this problem is to call WIDGET_EVENT with an array of widget
identifiers instead of a single ID. In this case, WIDGET_EVENT returns events for
any widget hierarchy in the list. This solution is effective, but it still requires that you
maintain a complete list of all interesting top-level base identifiers, which implies
that all cooperating applications need to know about each other.

The most powerful way to use WIDGET_EVENT is to call it without any arguments
at all. Called this way, it will return events for any currently-realized widgets that
have expressed an interest in being managed. (You specify that a widget wants to be
managed by setting the MANAGED keyword to the WIDGET_CONTROL
procedure.) This form of WIDGET_EVENT is especially useful when used in
conjuction with widget event callback routines, discussed in “Event Processing And
Callbacks” on page 637.

Managing Events with XMANAGER

As discussed above, WIDGET_EVENT provides basic widget event-handling
capabilities. However, it is extremely rare for a user-written widget program to
actually call WIDGET_EVENT directly. Instead, your programs should call the
XMANAGER procedure, which provides a convenient, simplified interface to
WIDGET_EVENT.

A widget application creates and realizes its widgets, and then calls XMANAGER.
XMANAGER arranges for an event-handling procedure supplied by the application
to be called when events for it arrive. The application is shielded from the details of
calling WIDGET_EVENT and interacting with other widget applications that may be
running simultaneously.

For these reasons, widget applications should always use XMANAGER in preference
to calling WIDGET_EVENT directly. The file xmng_tmpl.pro, found in the lib
Widget Events Building IDL Applications



Chapter 22: Widgets 613
subdirectory of the IDL distribution, is a template for writing widget applications that
use XMANAGER.

A Note About Blocking in XMANAGER

Beginning with IDL version 5.0, most versions of IDL’s command-processing front-
end are able to support an active command line while running properly constructed
widget applications. What this means is that—provided the widget application is
properly configured—the IDL command input line is available for input while a
widget application is running and widget events are being processed.

There are currently 5 separate IDL command-processing front-end implementations:

• Apple Macintosh Integrated Development Environment (IDLDE)

• Microsoft Windows IDLDE

• Motif IDLDE (Unix and VMS)

• Unix plain tty

• VMS plain tty

All of these front-ends are able to process widget events except for the VMS plain tty.
VMS users can still enjoy an active command line by using the IDLDE interface.

If the command-processing front-end can process widget events (that is, if the front-
end is not the VMS plain tty), it is still necessary for widget applications to be well-
behaved with respect to blocking widget event processing. Since in most cases
XMANAGER is used to handle widget event processing, this means that in order for
the command line to remain active, all widget applications must be run with the
NO_BLOCK keyword to XMANAGER set. (Note that since NO_BLOCK is not the
default, it is quite likely that some application will block.) If a single application runs
in blocking mode, the command line will be inaccessible until the blocking
application exits. When a blocking application exits, the IDL command line will once
again become active.

Note
NO_BLOCK is ignored by IDL Runtime. If a main procedure uses XMANAGER
with the NO_BLOCK keyword set, IDL Runtime defers subsequent processing of
the commands following the XMANAGER call until the widget associated with the
call to XMANAGER is destroyed.
Building IDL Applications Widget Events



614 Chapter 22: Widgets
JUST_REG vs. NO_BLOCK

Although their names imply a similar function, the JUST_REG and NO_BLOCK
keywords perform very different services. It is important to understand what they do
and how they differ.

The JUST_REG keyword tells XMANAGER that it should simply register a client
and then return immediately. The result is that the client becomes known to
XMANAGER, and that future calls to XMANAGER will take this client into
account. Therefore, JUST_REG only controls how the registering call to
XMANAGER should behave. The client can still be registered as requiring
XMANAGER to block by setting NO_BLOCK=0. In this case, future calls to
XMANAGER will block.

Note
JUST_REG is useful in situations where you suspect blocking might occur—if the
active command line is not supported and you wish to keep it active before
beginning event processing, or if blocking will be requested at a later time. If no
blocking will occur or if the blocking behavior is useful, it is not necessary to use
JUST_REG.

The NO_BLOCK keyword tells XMANAGER that the registered client does not
require XMANAGER to block if the command-processing front-end is able to
support active command line event processing. XMANAGER remembers this
attribute of the client until the client exits, even after the call to XMANAGER that
registered the client returns. NO_BLOCK is just a “vote” on how XMANAGER
should behave—the final decision is made by XMANAGER by considering the
NO_BLOCK attributes of all of its current clients as well as the ability of the
command-processing front-end in use to support the active command line.

Blocking vs. Non-blocking Applications

The issue of blocking in XMANAGER requires some explanation. IDL widget
events are not processed until the WIDGET_EVENT function is called to handle
them. Otherwise, they are queued by IDL indefinitely. Knowing how and when to
call WIDGET_EVENT is the primary service provided by XMANAGER.

There are two ways blocking is typically handled:

1. The first call to XMANAGER processes events by calling WIDGET_EVENT
as necessary until no managed widgets remain on the screen. This is referred to
as “blocking” because XMANAGER does not return to the caller until it is
done, and the IDL command line is not available.
Widget Events Building IDL Applications



Chapter 22: Widgets 615
2. XMANAGER does not block, and instead, the part of IDL that reads command
input also watches for widget events and calls WIDGET_EVENT as necessary
while also reading command input. This is referred to as “non-blocking” or
“active command line” mode.

XMANAGER will block unless all of the following conditions are met:

• The command-processing front-end is able to process widget events (that is,
the front-end is not the VMS plain tty).

• All registered widget applications have the NO_BLOCK keyword to
XMANAGER set.

• No modal dialogs are displayed. (Modal dialogs always block until dismissed.)

In general, we suggest that new widget applications be written with XMANAGER
blocking disabled (that is, with the NO_BLOCK keyword set), unless the application
will be run on IDL Runtime.

Note
NO_BLOCK is ignored by IDL Runtime. If a main procedure uses XMANAGER
with the NO_BLOCK keyword set, IDL Runtime defers subsequent processing of
the commands following the XMANAGER call until the widget associated with the
call to XMANAGER is destroyed.

Since a widget application that does block event processing for itself will block event
processing for all other widget applications (and the IDL command line) as well, we
suggest that older widget applications be upgraded to take advantage of the new, non-
blocking behavior by adding the NO_BLOCK keyword to most calls to
XMANAGER.

Features Reserved to XMANAGER

Because XMANAGER buffers you from direct handling of widget events, it requires
that you not explicitly specify certain event handling features for the top-level base of
your widget application. To be able to work with XMANAGER, widget applications
should avoid the following pitfalls. If you ignore the suggestions below, your changes
will conflict with those made by XMANAGER:

• Do not specify an event-handling function or procedure on the top-level base
of a widget application using the EVENT_FUNC or EVENT_PRO keywords
to the widget creation functions or WIDGET_CONTROL. Instead, provide the
name of the event handler routine to XMANAGER via the
EVENT_HANDLER keyword.
Building IDL Applications Widget Events



616 Chapter 22: Widgets
• Do not specify a death notification procedure on the top-level base of a widget
application using the KILL_NOTIFY keyword to the widget creation
functions or WIDGET_CONTROL. Instead, provide the name of your
“cleanup” routine to XMANAGER via the CLEANUP keyword.

For a detailed discussion, see XMANAGER in the IDL Reference Guide.

The XREGISTERED Function

The XMANAGER procedure does not restrict applications to only a single running
copy. Indeed, it is desirable for most applications to allow multiple simultaneous
instances to run. However, there are some applications that should only allow a single
instance at a time, either because it makes logical sense or because a weakness in the
implementation requires it. An obvious example of this is an application that uses a
COMMON block to maintain its current state (see “Managing Widget Application
State” on page 640).

The XREGISTERED function can be used in such applications to ensure that only a
single copy can run at a time. Place the following statement at the start of the routine:

IF XREGISTERED('routine_name') THEN RETURN

where routine_name is the name of the widget application.

See XREGISTERED in the IDL Reference Guide for further information.
Widget Events Building IDL Applications



Chapter 22: Widgets 617
Widget Example 2

The following example demonstrates how user values can be used to simplify event
processing and to pass variables between routines. It creates a base widget with three
buttons and a text field that reports which button was pressed.

Enter the two procedures listed below — either in a text file named widget2.pro,
or directly into IDL using the .RUN command. Enter widget2 at the IDL prompt to
run the program.

PRO widget2_event, ev
WIDGET_CONTROL, ev.top, GET_UVALUE=textwid
WIDGET_CONTROL, ev.id, GET_UVALUE=uval
CASE uval OF

'ONE' : WIDGET_CONTROL, textwid, SET_VALUE='Button One Pressed'
'TWO' : WIDGET_CONTROL, textwid, SET_VALUE='Button Two Pressed'
'DONE': WIDGET_CONTROL, ev.top, /DESTROY

ENDCASE
END

PRO widget2
base = WIDGET_BASE(/COLUMN)
button1 = WIDGET_BUTTON(base, VALUE='One', UVALUE='ONE')
button2 = WIDGET_BUTTON(base, VALUE='Two', UVALUE='TWO')
text = WIDGET_TEXT(base, XSIZE=20)
button3 = WIDGET_BUTTON(base, value='Done', UVALUE='DONE')
WIDGET_CONTROL, base, SET_UVALUE=text
WIDGET_CONTROL, base, /REALIZE
XMANAGER, 'Widget2', base
END

Alternately, you can run the program from the IDL distribution by entering:

widget2

at the IDL command prompt. See “Running the Example Code” on page 591 if IDL
does not run the program as expected.

Once again, let’s examine the creation routine, widget2, first. We first create a top-
level base, this time specifying the COLUMN keyword to ensure that the widgets
contained in the base are stacked vertically. We create two buttons with values “One”
and “Two,” and user values “ONE” and “TWO.” Remember that the value of a button
widget is also the button’s label. We create a text widget, and specify its width to be
20 characters using the XSIZE keyword. The last button is the “Done” button, with a
the user value “DONE.”
Building IDL Applications Widget Example 2



618 Chapter 22: Widgets
Next follow two calls to the WIDGET_CONTROL procedure. The first sets the user
value of the top-level base equal to the widget ID of our text widget. This will allow
us easy access to the text widget from our event handling routine. The second realizes
the top-level base and all its child widgets. Finally, we invoke the XMANAGER to
manage the widget application.

The widget2_event routine is slightly more complicated than its predecessor. We
begin by using WIDGET_CONTROL to retrieve the widget ID of the our text widget
from the user value of the top-level base. We can do this because we know that the
widget ID of our top-level base is contained in the TOP field of the widget event
structure — thus, ev.top contains the widget ID of the base widget. We use the
GET_UVALUE keyword to store the widget ID of the text widget in the variable
textwid.

Next, we use WIDGET_CONTROL and the GET_UVALUE keyword to retrieve the
user value of the widget that generated the event. Again, we can do this because we
know that the widget ID of the widget that generated the event is stored in the ID
field of the event structure. We then use a CASE statement to compare the user value
of the widget, now stored in the variable uval, with the list of possible user values
(which we know, have set them explicitly in the creation routine) to determine which
button was pressed and act accordingly.

In the CASE statement, we check to see if uval is the user value associated with
either button one or button two. If it is, we use WIDGET_CONTROL and the
SET_VALUE keyword to alter the value of the text widget, whose ID we stored in
the variable textwid. If uval is 'DONE', we recognize that the user has clicked on the
“Done” button and use WIDGET_CONTROL to destroy the widget hierarchy.
Widget Example 2 Building IDL Applications



Chapter 22: Widgets 619
Using Draw Widgets

Draw widgets are graphics windows that appear as part of a widget hierarchy rather
than appearing as an independent window. Like other graphics windows, draw
widgets can be created to use either Direct or Object graphics. (See Chapter 10,
“Graphics” in the Using IDL manual for a discussion of IDL’s two graphics modes.)
Draw widgets allow designers of IDL graphical user interfaces to take advantage of
the full power of IDL graphics in their displays.

Using Direct Graphics in Draw Widgets

Standard Direct graphics windows are created using the WINDOW procedure, while
Direct graphics draw widgets are created using the WIDGET_DRAW function with
the GRAPHICS_LEVEL keyword set equal to one. Draw widgets use Direct
graphics by default. Once created, Direct graphics windows and draw widgets are
used in the same way.

All IDL Direct graphics windows are referred to by a window number. Unlike
windows created by the WINDOW procedure, the window number of a Direct
graphics draw widget cannot be assigned by the user. In addition, the window number
of a draw widget is not assigned until the draw widget is actually realized, and thus
cannot be returned by WIDGET_DRAW when the widget is created. Instead, you
must use the WIDGET_CONTROL procedure to retrieve the window number, which
is stored in value of the draw widget, after the widget has been realized.

Unlike normal graphics windows, creating a draw widget does not cause the current
graphics window to change to the new widget. You must use the WSET procedure to
explicitly make the draw widget the current graphics window. The following IDL
statements demonstrate the required steps:

;Create a base widget.
base = WIDGET_BASE()

;Attach a 256 x 256 draw widget.
draw = WIDGET_DRAW(base, XSIZE = 256, YSIZE = 256)
;Realize the widgets.
WIDGET_CONTROL, /REALIZE, base

;Obtain the window index.
WIDGET_CONTROL, draw, GET_VALUE = index

;Set the new widget to be the current graphics window
WSET, index
Building IDL Applications Using Draw Widgets



620 Chapter 22: Widgets
If you attempt to get the value of a draw widget before the widget has been realized,
WIDGET_CONTROL returns the value -1, which is not a valid index.

Using Object Graphics in Draw Widgets

Standard Object graphics windows are IDLgrWindow objects, whereas Object
graphics draw widgets are created using the WIDGET_DRAW function with the
GRAPHICS_LEVEL keyword set equal to two. Once created, Object graphics
windows and draw widgets are used in the same way.

All IDL Object graphics windows are referred to by an object reference. Since you do
not explicitly create the IDLgrWindow object used in a draw widget, you must
retrieve the object reference by using the WIDGET_CONTROL procedure to get the
value of the draw widget. As with Direct graphics draw widgets, the window object is
not created—and thus the object reference cannot be retrieved—until after the draw
widget is realized.

Scrolling Draw Widgets

Another difference between a draw widget and either a graphics window created with
the WINDOW procedure or an IDLgrWindow object is that draw widgets can include
scroll bars. Setting the APP_SCROLL keyword or the SCROLL keyword to the
WIDGET_DRAW function causes scrollbars to be attached to the drawing widget,
which allows the user to view images or graphics larger than the visible area. Use the
APP_SCROLL keyword when displaying images, or anything drawn in device units
or pixels. Use the SCROLL keyword when a draw widget is going to display graphics
drawn in data units (e.g., PLOT, CONTOUR, SURFACE).

The IDL SLIDE_IMAGE routine is an example of a widget application that uses both
regular and scrolling draw widgets. See WIDGET_DRAW in the IDL Reference
Guide for details, or inspect the file slide_image.pro in the lib subdirectory of
the IDL distribution for an example.
Using Draw Widgets Building IDL Applications



Chapter 22: Widgets 621
Creating Menus

Menus allow a user to select one or more options from a list of options. IDL widgets
allow you to build a number of different types of menus for your widget application.

Button Groups

One approach to menu creation is to build an array of buttons. With a button menu,
all options are visible to the user all the time. To create a button menu, do the
following:

1. Call the WIDGET_BASE function to create a base to hold the buttons. Use the
COLUMN and ROW keywords to determine the layout of the buttons.

2. Call the WIDGET_BUTTON function once for each button to be added to the
base created in the previous step.

Because menus of buttons are common, IDL provides a compound widget named
CW_BGROUP to create them. Using CW_BGROUP rather than a series of calls to
WIDGET_BUTTON simplifies creation of a menu of buttons and also simplifies
event handling by providing a single event structure for the group of buttons. For
example, the following IDL statements create a button menu with five choices:

values = ['One', 'Two', 'Three', 'Four', 'Five']
base = WIDGET_BASE()
bgroup = CW_BGROUP(base, values, /COLUMN)
WIDGET_CONTROL, base, /REALIZE

In this example, one call to CW_BGROUP replaces five calls to
WIDGET_BUTTON.

Exclusive or Nonexclusive Buttons

Buttons in button groups normally act as independent entities, returning a selection
event (a one in the select field of the event structure) or similar value when pressed.
Groups of buttons can also be made to act in concert, as either exclusive or non-
exclusive groups. In contrast to normal button groups, both exclusive and non-
exclusive groups display which buttons have been selected.

Exclusive button groups allow only one button to be selected at a given time. Clicking
on an unselected button deselects any previously-selected buttons. Non-exclusive
button groups allow any number of buttons to be selected at the same time. Clicking
on the same button repeatedly selects and deselects that button.
Building IDL Applications Creating Menus



622 Chapter 22: Widgets
The following code creates three button groups. The first group is a “normal” button
group as created in the previous example. The next is an exclusive group, and the
third is a non-exclusive group.

values = ['One', 'Two', 'Three', 'Four', 'Five']
base = WIDGET_BASE(/ROW)
bgroup1 = CW_BGROUP(base, values, /COLUMN, $
                    LABEL_TOP='Normal', /FRAME)
bgroup2 = CW_BGROUP(base, values, /COLUMN, /EXCLUSIVE, $
                    LABEL_TOP='Exclusive', /FRAME)
bgroup3 = CW_BGROUP(base, values, /COLUMN, /NONEXCLUSIVE, $
                    LABEL_TOP='Nonexclusive', /FRAME)
WIDGET_CONTROL, base, /REALIZE

The widget created by this code is shown in the following figure:

Lists

A second approach to menu creation is to provide the user with a list of options in the
form of a scrolling or drop-down list. A scrolling list is always displayed, although it
may not show all items in the list at all times. A drop-down list shows only the
selected item until the user clicks on the list, at which time it displays the entire list.
Both lists allow only a single selection at a time.

The following example code uses the WIDGET_LIST and WIDGET_DROPLIST functions
to create two menus of five items each. While both lists contain five items, the

Figure 22-2: Normal Menu (left), Exclusive Menu (center) and Non-exclusive
Menu (right)
Creating Menus Building IDL Applications



Chapter 22: Widgets 623
scrolling list displays only three at a time, because we specify this with the YSIZE
keyword.

values = [’One’, ’Two’, ’Three’, ’Four’, ’Five’]
base = WIDGET_BASE(/ROW)
list = WIDGET_LIST(base, VALUE=values, YSIZE=3)
drop = WIDGET_DROPLIST(base, VALUE=values)
WIDGET_CONTROL, base, /REALIZE

The widget created by this code is shown in the following figure:

Pulldown Menus

A third approach to menu creation involves menus that appear as a single button until
the user selects the menu, at which time the menu pops up to display the list of
possible selections. Buttons in such a pulldown menu can activate other pulldown
menus to any desired depth. The method for creating a pulldown menu is as follows:

1. The topmost element of any pulldown menu is a button, created with the
MENU keyword to the WIDGET_BUTTON function.

2. The top-level button has one or more child widget buttons attached. (That is,
one or more buttons specify the first button’s widget ID as their “parent.”)
Each button can either be used as is, in which case pressing it causes an event
to be generated, or it can be created with the MENU keyword and have further
child widget buttons attached to it. If it has child widgets, pushing it causes a
pulldown menu containing the child buttons to pop into view.

3. Menu buttons can be the parent of other buttons to any desired depth.

Because pulldown menus are common, IDL provides a compound widget named
CW_PDMENU to create them. Using CW_PDMENU rather than a series of calls to

Figure 22-3: A scrolling list and a drop-down list.
Building IDL Applications Creating Menus



624 Chapter 22: Widgets
WIDGET_BUTTON simplifies creation of a pulldown menu in the same way the
CW_BGROUP simplifies the creation of button menus.

The following example uses CW_PDMENU to create a pulldown menu. First, we
create an array of anonymous structures to contain the menu descriptions.

desc = REPLICATE({ flags:0, name:'' }, 6)

The desc array contains six copies of the empty structure. Each structure has two
fields: flags and name. Next, we populate these fields with values:

desc.flags = [ 1, 0, 1, 0, 2, 2 ]
desc.name = [ 'Operations', 'Predefined', 'Interpolate', $

'Linear', 'Spline', 'Quit' ]

The value of the flags field specifies the role of each button. In this example, the
first and third buttons start a new sub-menu (values are 1), the second and fourth
buttons are plain buttons with no other role (values are 0), and the last two buttons
end the current sub-menu and return to the previous level (values are 2). The value of
the name field is the value (or label) of the button at each level.

base = WIDGET_BASE()
menu = CW_PDMENU(base, desc)
WIDGET_CONTROL, base, /REALIZE

The format of the menu description used by CW_PDMENU in the above example
requires some explanation. CW_PDMENU views a menu as consisting of a series of
buttons, each of which can optionally lead to a sub-menu. The description of each
button consists of a structure supplying its name and a flag field that tells what kind
of button it is (starts a new sub-menu, ends the current sub-menu, or a plain button
within the current sub-menu). The description of the complete menu consists of an
array of such structures corresponding to the flattened menu. Compare the
description used in the code above with the result shown in the following figure.

Figure 22-4: Pulldown menu created with CW_PDMENU.
Creating Menus Building IDL Applications



Chapter 22: Widgets 625
Menus on Top-Level Bases

A final approach to providing menus in your widget application is to attach the
menus directly to the top-level base widget. Menus attached to a top-level base
widget are created just like pulldown menus created from button widgets, but they do
not appear as buttons. Menus created in this way are children of a special sub-base of
the top-level base, created by specifying the MBAR keyword when the top-level base
is created.

For example, the following code creates a top-level base widget and attaches a menu
titled MENU1 to it. MENU1 contains the choices ONE, TWO, and THREE.

base = WIDGET_BASE(MBAR=bar)
menu1 = WIDGET_BUTTON(bar, VALUE='MENU1', /MENU)
button1 = WIDGET_BUTTON(menu1, VALUE='ONE')
button2 = WIDGET_BUTTON(menu1, VALUE='TWO')
button3 = WIDGET_BUTTON(menu1, VALUE='THREE')
draw = WIDGET_DRAW(base, XSIZE=100, YSIZE=100)
WIDGET_CONTROL, base, /REALIZE

The resulting widget is shown in the following figure:

Figure 22-5: Menu attached to a top-level base.
Building IDL Applications Creating Menus



626 Chapter 22: Widgets
Controlling Widgets

The WIDGET_CONTROL procedure allows you to realize, manage, and destroy
widget hierarchies. It is often used to change the default behavior or appearance of
previously-realized widgets.

Some keywords to WIDGET_CONTROL affect only certain types of widgets, others
affect any type of widget, and some affect the widget system in general without being
tied to a single widget ID or widget type. See WIDGET_CONTROL in the IDL
Reference Guide for complete details. We discuss here only a few of the more
common uses of this procedure.

Realizing Widget Hierarchies

As we have seen in the above examples, widgets must be realized before they appear
on screen. In most cases, you will want to realize your entire widget hierarchy at the
same time. Do this with the statement

WIDGET_CONTROL, base, /REALIZE

were base is the widget ID of the top-level base widget for your widget hierarchy.

Killing Widget Hierarchies

The standard way to kill a widget hierarchy is with the statement

WIDGET_CONTROL, base, /DESTROY

where base is the widget ID of the top-level base widget of the hierarchy to be
killed. Usually, IDL programs that use widgets issue this statement in their event-
handling routine in response to the application “Done” button.

In addition, some window managers place a pulldown menu on the frame of the top-
level base widget that allows the user to kill the entire hierarchy. Using the window
manager to kill a widget hierarchy is equivalent to using the WIDGET_CONTROL
procedure.

When designing widget applications, you should always include a “Done” button in
the application itself, because some window managers do not provide the user with a
kill option from the outer frame.

Retrieving or Changing Widget Values

As we discussed previously, you can use WIDGET_CONTROL to retrieve or change
widget values using the GET_VALUE and SET_VALUE keywords. Similarly, you
Controlling Widgets Building IDL Applications



Chapter 22: Widgets 627
can retrieve or change widget user values with the GET_UVALUE and
SET_UVALUE keywords.

For example, you could use the following command in an event handling procedure
to save the user value of the widget that generates an event into an IDL variable
named uval:

WIDGET_CONTROL, event.id, GET_UVALUE=uval

Similarly, you could use the following commands to retrieve the value of a draw
widget named drawwid and make that draw widget the current graphics window:

WIDGET_CONTROL, drawwid, GET_VALUE=draw
WSET, draw

Sensitizing Widgets

When a widget is sensitive, it has normal appearance and can receive user input.
When a widget is insensitive, it ignores any input directed at it. Use sensitivity to
control when a user is allowed to manipulate a widget. Note that while most widgets
change their appearance when they become insensitive, some simply stop generating
events.

Set the SENSITIVE keyword equal to zero to desensitize a widget, or to a nonzero
value to make it sensitive. For example, you might wish to make a group of buttons
named bgroup insensitive after some user input. You would use the following
command:

WIDGET_CONTROL, bgroup, SENSITIVE=0

Indicating Time-Consuming Operations

In an event driven environment, it is important that the interface be highly responsive
to the user’s manipulations. This means that widget event handlers should be written
to execute quickly and return. However, sometimes the event handler has no option
but to perform an operation that is slow. In such a case, it is a good idea to give the
user feedback that the system is busy. This is easily done using the HOURGLASS
keyword just before the expensive operation is started:

WIDGET_CONTROL, /HOURGLASS

This command causes IDL to turn on an hourglass-shaped cursor for all IDL widgets
and graphics windows. The hourglass remains active until the next event is
processed, at which point the previous cursor is automatically restored.
Building IDL Applications Controlling Widgets



628 Chapter 22: Widgets
Using Timer Events

In addition to the normal widget events discussed previously, IDL allows the user to
make timer event requests by using the TIMER keyword. Such events are useful in
many applications that are time dependent, such as animation. The syntax for making
such a request is:

WIDGET_CONTROL, Widget_Id, TIMER=interval_in_seconds

Widget_Id can be the ID of any type of widget. When such a request is made, IDL
generates a timer request after the requested time interval has passed. Timer events
consist of a structure with only the standard three fields — no additional information is
provided.

It is up to the programmer to differentiate between a normal event and a timer event
for a given widget. The usual way to solve this problem is to make timer requests for
widgets that do not otherwise generate events, such as base or label widgets.

Each timer request causes a single event to be generated. To generate a steady stream
of timer events, you must make a new timer request in the event handler routine each
time a timer event is delivered. The following example demonstrates how to check
for a timer event and generate a new timer event each time a timer event occurs:

PRO timer_example_event, ev

WIDGET_CONTROL, ev.id, GET_UVALUE=uval
IF (TAG_NAMES(ev, /STRUCTURE_NAME) EQ 'WIDGET_TIMER') THEN BEGIN

PRINT, 'Timer Fired'
WIDGET_CONTROL, ev.top, TIMER=2

END

CASE uval OF
'timer' : BEGIN

WIDGET_CONTROL, ev.top, TIMER=2
END

'exit' : WIDGET_CONTROL, ev.top, /DESTROY
ELSE:
ENDCASE

END

PRO timer_example
base = WIDGET_BASE(/COLUMN, UVALUE='base')
b1 = WIDGET_BUTTON(base, VALUE='Fire event', UVALUE='timer')
b2 = WIDGET_BUTTON(base, VALUE='Exit', UVALUE='exit')

   WIDGET_CONTROL, base, /REALIZE
   XMANAGER, 'timer_example', base, /NO_BLOCK
END
Controlling Widgets Building IDL Applications



Chapter 22: Widgets 629
Widget Example 3

The following example program creates a small widget application consisting of a
draw widget and a droplist menu. One of three plots is displayed in the draw widget
depending on the selection made from the droplist. To add to the excitement, we will
use timer events to change the color table used in the draw window every three
seconds.

Enter the two procedures listed below — either in a text file named widget3.pro,
or directly into IDL using the .RUN command. Enter widget3 at the IDL prompt to
run the program.

PRO widget3_event, ev

We need to save the value of the seed variable for the random number generator
between calls to the event-handling routine. We do this using a COMMON block.

COMMON wid3, seed

Retrieve the widget ID of the draw widget and make it the current IDL graphics
window:

WIDGET_CONTROL, ev.top, GET_UVALUE=drawID
WSET, drawID

Check the type of event structure returned. If it is a timer event, change the color
table index to a random number between 0 and 40. (See “Event Processing And
Callbacks” on page 637 for more on identifying widget types from returned event
structures.)

IF (TAG_NAMES(ev, /STRUCTURE_NAME) EQ 'WIDGET_TIMER') $
THEN BEGIN

;Pick a random number.
table = FIX(RANDOMU(seed)*41)
;Load the color table.
LOADCT, table
;Reset the timer.
WIDGET_CONTROL, ev.id, TIMER=3.0

ENDIF

If the event is a droplist event, change the type of plot displayed in the draw widget.
Note the use of the index field of events returned from the droplist widget to
determine the value selected.

IF (TAG_NAMES(ev, /STRUCTURE_NAME) EQ 'WIDGET_DROPLIST') $
THEN BEGIN

CASE ev.index OF
Building IDL Applications Widget Example 3



630 Chapter 22: Widgets
0: PLOT, DIST(150)
1: SURFACE, DIST(150)
2: SHADE_SURF, DIST(150)
3: WIDGET_CONTROL, ev.top, /DESTROY

ENDCASE
ENDIF
END

Create a base widget containing a draw widget and a droplist menu.

PRO widget3

select = ['Plot', 'Surface', 'Shaded Surface', 'Done']
base = WIDGET_BASE(/COLUMN)
draw = WIDGET_DRAW(base, XSIZE=150, YSIZE=150)
dlist = WIDGET_DROPLIST(base, VALUE=select)

Realize the widget hierarchy, then retrieve the value of the draw widget and store it in
the user value of the base widget. (Note that we are using Direct graphics for the draw
widget, so the value is an IDL graphics window ID.) Finally, set the timer value of the
draw widget.

WIDGET_CONTROL, base, /REALIZE
WIDGET_CONTROL, draw, GET_VALUE=drawID
WIDGET_CONTROL, base, SET_UVALUE=drawID
WIDGET_CONTROL, draw, TIMER=0.0

Set the droplist to display “Shaded Surface” and place a shaded surface in the draw
widget:

WIDGET_CONTROL, dlist, SET_DROPLIST_SELECT=2
WSET, drawID
SHADE_SURF, DIST(150)
;Register the widget with the XMANAGER.
XMANAGER, 'widget3', base
END

Alternately, you can run the program from the IDL distribution by entering:

widget3

at the IDL command prompt. See “Running the Example Code” on page 591 if IDL
does not run the program as expected.

This example is intentionally silly. The intent is to demonstrate the use of draw
widgets, menus, and timer events with a minimum of other issues to complicate
things. However, it is easy to imagine applications wherein a graphics window
containing a plot or some other information is updated periodically by a timer. The
method used here can be easily applied to more realistic situations.
Widget Example 3 Building IDL Applications



Chapter 22: Widgets 631
Widget Sizing

This section explains how IDL widgets size themselves, widget geometry concepts,
and how to explicitly size and position widgets.

Widget Geometry Terms and Concepts

Widget geometry, or the size and layout of widgets, is determined by many
interrelated factors. In the following discussion, the following terms are used:

• Geometry: The size and position of a widget.

• Natural Size: The natural, or implicit, size of a widget is the size a widget has
if no external constraints are placed on it. For example, a label widget has a
natural size that is determined by the size of the text it is displaying and space
for margins. These values are influenced by such things as the size of the font
being displayed and characteristics of the low-level (i.e., operating-system
level) widget or control used to implement the IDL widget.

• Explicit Size: The explicit, or user-specified, size of a widget is the size set
when an IDL programmer specifies one of the size keywords to an IDL widget
creation function or WIDGET_CONTROL.

How Widget Geometry is Determined

IDL uses the following rules to determine the geometry of a widget:

• The explicit size of a widget, if one is specified, takes precedence over the
natural size. That is, the user-specified size is used if available.

• If an explicit size is not specified, the natural size of the widget—at the time
the widget is realized—is used. Once realized, the size of a widget does not
automatically change when the value of the widget changes, unless the
widget’s dynamic resize property has been set. Dynamic resizing is discussed
in more detail below. Note that any realized widget can be made to change its
size by calling WIDGET_CONTROL with any of the sizing keywords.

• Children of a “bulletin board” base (i.e., a base that was created without setting
the COLUMN or ROW keywords) have an offset of (0,0) unless an offset is
explicitly specified via the XOFFSET or YOFFSET keywords.

• The offset keywords to widgets that are children of ROW or COLUMN bases
are ignored, and IDL calculates the offsets to lay the children out in a grid.
Building IDL Applications Widget Sizing



632 Chapter 22: Widgets
This calculation can be influenced by setting any of the ALIGN or
BASE_ALIGN keywords when the widgets are created.

Dynamic Resizing

Realized widgets, by default, do not automatically resize themselves when their
values change. This is true whether the widget was created with an explicit size or the
widget was allowed to size itself naturally. This behavior makes it easy to create
widget layouts that don’t change size too frequently or “flicker” due to small changes
in a widget’s natural size.

This default behavior can be changed for label, button, and droplist widgets. Set the
DYNAMIC_RESIZE keyword to WIDGET_LABEL, WIDGET_BUTTON, or
WIDGET_DROPLIST to make a widget that automatically resizes itself when its
value changes. Note that the XSIZE and YSIZE keywords should not be used with
DYNAMIC_RESIZE. Setting explicit sizing values overrides the dynamic resize
property and creates a widget that will not resize itself.

Explicitly Specifying the Size and Location of Widgets

The XSIZE (and SCR_XSIZE), YSIZE (and SCR_YSIZE), XOFFSET, and
YOFFSET keywords, when used with a standard base widget parent (a base created
without the COLUMN or ROW keywords—also called a “bulletin board” base),
allow you to specify exactly how the child widgets should be positioned. Sometimes
this is a very useful option. However, in general, it is best to avoid this style of
programming. Although these keywords are usually honored, they are merely hints to
the widget toolkit and might be ignored.

Explicitly specifying the size and offset makes a program inflexible and unable to run
gracefully on various platforms. Often, a layout of this type will look good on one
platform, but variations in screen size and how the toolkit works will cause widgets to
overlap and not look good on another platform. The best way to handle this situation
is to use nested row and column bases to hold the widgets and let the widgets arrange
themselves. Such bases are created using the COLUMN and ROW keywords to the
WIDGET_BASE function.

Sizing Keywords

When explicitly setting the size of a widget, IDL allows you to control three aspects
of the size:

• The virtual size is the size of the potentially viewable area of the widget. The
virtual size may be larger than the actual viewable area on your screen. The
Widget Sizing Building IDL Applications



Chapter 22: Widgets 633
virtual size of a widget is determined by either the widget’s value, or the
XSIZE and YSIZE keywords to the widget creation routine.

• The viewport size is the size of the viewable area on your screen. If the
viewport size is smaller than the virtual size, scroll bars may be present to
allow you to view different sections of the viewable area. When creating
widgets for which scroll bars are appropriate, you can add scroll bars by setting
the SCROLL keyword to the widget creation routine. You can explicitly set the
size of the viewport area using the X_SCROLL_SIZE and Y_SCROLL_SIZE
keywords when creating base, draw, and table widgets.

Note
With draw widgets, you can set the APP_SCROLL or the SCROLL keyword. Use
the APP_SCROLL keyword when displaying images, or anything drawn in device
units or pixels. Use the SCROLL keyword when a draw widget is going to display
graphics drawn in data units (e.g., PLOT, CONTOUR, SURFACE).

• The screen size is the size of the widget on your screen. You can explicitly
specify a screen size using the SCR_XSIZE and SCR_YSIZE keywords to the
widget creation routine. Explicitly-set viewport sizes (set with
X_SCROLL_SIZE or Y_SCROLL_SIZE) are ignored if you specify the
screen size.

The following code shows an example of the WIDGET_DRAW command:

draw = WIDGET_DRAW(base, XSIZE=384, YSIZE=384, $
X_SCROLL_SIZE=192, Y_SCROLL_SIZE = 192, SCR_XSIZE=200)

This results in the following:
Building IDL Applications Widget Sizing



634 Chapter 22: Widgets
In this case, the XSIZE and YSIZE keywords set the virtual size to 384 x 384 pixels.
The X_SCROLL_SIZE and Y_SCROLL_SIZE keywords set the viewport size to
192 x 192 pixels. Finally, the SCR_XSIZE keyword overrides the X_SCROLL_SIZE
keyword and forces the screen size of the widget (in the X-dimension) to 200 pixels,
including the scroll bar.

Controlling Widget Size after Creation

A number of keywords to the WIDGET_CONTROL procedure allow you to change
the size of a widget after it has been created. (You will find a list of the keywords to
WIDGET_CONTROL that apply to each type of widget at the end of the widget
creation routine documentation.) Note that keywords to WIDGET_CONTROL may
not control the same parameters as their counterparts associated with widget creation
routines. For example, while the XSIZE and YSIZE keywords to WIDGET_DRAW
control the virtual size of the draw widget, the XSIZE and YSIZE keywords to
WIDGET_CONTROL (when called with the widget ID of a draw widget) control the
viewport size of the draw widget.

Figure 22-6: Visual description of widget sizes.

Virtual Size (XSIZE & YSIZE)

Screen Size (SCR_XSIZE)

V
ie

w
 S

iz
e 

(Y
_S

C
R

O
L

L
_S

IZ
E

)

Virtual Size (XSIZE & YSIZE)
Widget Sizing Building IDL Applications



Chapter 22: Widgets 635
Units of Measurement

You can specify the unit of measurement used for most widget sizing operations.
When using a widget creation routine, or when using WIDGET_CONTROL or
WIDGET_INFO, set the UNITS keyword equal to 0 (zero) to specify that all
measurements are in pixels (this is the default), to 1 (one) to specify that all
measurements are in inches, or to 2 (two) to specify that all measurements are in
centimeters.

Note
The UNITS keyword does not affect all sizing operations. Specifically, the value of
UNITS is ignored when setting the XSIZE or YSIZE keywords to WIDGET_LIST,
WIDGET_TABLE, or WIDGET_TEXT.

Finding the Size of the Screen

When creating the top-level base for an application, sometimes it is useful to know
the size of the screen. This information is available via the GET_SCREEN_SIZE
function. GET_SCREEN_SIZE returns a two-element integer array specifying the
size of the screen, in pixels. See GET_SCREEN_SIZE in the IDL Reference Guide
for details.

Preventing Layout Flicker

After a widget hierarchy has been realized, adding or destroying widgets in that
hierarchy causes IDL to recalculate and set new geometries for every widget in the
hierarchy. When a number of widgets are added or destroyed, these calculations
occur between each change to the hierarchy, resulting in unpleasant screen “flashing”
as the user sees a brief display of each intermediate widget configuration. This
behavior can be eliminated by using the UPDATE keyword to
WIDGET_CONTROL.

The top-level base of every widget hierarchy has an UPDATE attribute that
determines whether or not changes to the hierarchy are displayed on screen. Setting
UPDATE to 0 turns off immediate updates and allows you to make a large number of
changes to a widget hierarchy without updating the screen after each change. After all
of your changes have been made, setting UPDATE to 1 causes the final widget
configuration to be displayed on screen.

For example, consider the following main-level program that realizes an unmapped
base, then adds 200 button widgets to the previously-realized base:

time = SYSTIME(1)
Building IDL Applications Widget Sizing



636 Chapter 22: Widgets
b = WIDGET_BASE(/COLUMN, XSIZE=400, YSIZE=400, MAP=0)
WIDGET_CONTROL, b, /REALIZE
FOR i = 0, 200 DO button = WIDGET_BUTTON(b, VALUE=STRING(i))
WIDGET_CONTROL, b, /MAP
PRINT, 'time used: ', SYSTIME(1) - time
END

This program takes over 50 seconds to run on an HP 9000/720 workstation. If the
base had been mapped, the user would see the base “flashing” as each button was
added to the base. Altering the example to use the UPDATE keyword reduces the
execution time to 0.7 seconds:

time = SYSTIME(1)
b = WIDGET_BASE(/COLUMN, XSIZE=400, YSIZE=400, MAP=0)
WIDGET_CONTROL, b, /REALIZE, UPDATE=0
FOR i = 0, 200 DO button = WIDGET_BUTTON(b, VALUE=STRING(i))
WIDGET_CONTROL, b, /MAP, /UPDATE
PRINT, 'time used: ', SYSTIME(1) - time
END

Note
Do not attempt to resize a widget on the Windows platform while UPDATE is
turned off. Doing so may prevent IDL from updating the screen properly.
Widget Sizing Building IDL Applications



Chapter 22: Widgets 637
Event Processing And Callbacks

Previously we mentioned that when IDL receives an event, it is queued until a call to
WIDGET_EVENT is made, when the event is dequeued and returned. That is a
simplified description of what actually happens.

All events for a given widget are processed in the order that they are generated. The
event processing performed by WIDGET_EVENT consists of the following steps,
applied iteratively:

• WIDGET_EVENT waits for an event from one of the specified widgets to
arrive.

• Starting with the widget that the event belongs to, move up the widget
hierarchy looking for a widget that has an event-handling procedure or
function associated with it. Such routines are associated with a widget via the
EVENT_PRO and EVENT_FUNC keywords to the widget creation functions
or the WIDGET_CONTROL procedure.

• If an event-handling procedure is found, it is called with the event as its
argument. The HANDLER field of the event is set to the widget ID of the
widget associated with the handling procedure. When the procedure returns,
WIDGET_EVENT returns to the first step above and starts searching for
events. Hence, event-handling procedures are said to “swallow” events.

• If an event-handling function is found, it is called with the event as its
argument. The HANDLER field of the event is set to the widget ID of the
widget associated with the handling function.

When the function returns, its value is examined. If the value is not a structure, it is
discarded and WIDGET_EVENT returns to the first step. This behavior allows
event-handling functions to selectively act like event-handling procedures and
“swallow” events.

If the returned value is a structure, it is checked to ensure that it has the standard first
3 fields: ID, TOP, and HANDLER. If not, an error is issued. Otherwise, the returned
value replaces the event found in the first step and WIDGET_EVENT continues
moving up the widget tree looking for another event handler routine, as described in
step 2, above.

Hence, event functions are said to “rewrite” events. This ability to rewrite events is
the basis of compound widgets which combine several widgets to give the appearance
of a single, more complicated widget. Compound widgets are an important widget
programming concept. For more information, see “Compound Widgets” on page 642.
Building IDL Applications Event Processing And Callbacks



638 Chapter 22: Widgets
• If an event reaches the top of a widget hierarchy without being swallowed by
an event handler, it is returned as the value of WIDGET_EVENT.

• If WIDGET_EVENT was called without an argument, and there are no
widgets left on the screen that are being managed (as set via the MANAGED
keyword to the WIDGET_CONTROL procedure) and could generate events,
WIDGET_EVENT ends the search and returns an empty event (i.e., a standard
widget event structure with the top three fields set to zero).

Identifying Widget Type from an Event

Given a widget event structure, often you need to know what type of widget
generated it without having to match the widget ID in the event structure to all the
current widgets. This information is available by specifying the
STRUCTURE_NAME keyword to the TAG_NAMES function:

PRINT, 'Event structure type: ', $
TAG_NAMES(EVENT, /STRUCTURE_NAME)

This works because each widget type generates a different event structure. The event
structure generated by a given widget type is documented in the description of the
widget creation function for that type.

When using this technique, be aware that although all the basic widgets use named
structures for their events, many compound widgets return anonymous structures.
This technique does not work well in that case because anonymous structures lack a
recognizable name.

Note
Always check for a distinct type of widget event. Research Systems will continue to
add new widgets with new event structures, so it is important not to make
assumptions about the contents of a random widget event structure. The structure of
existing widget events will remain stable, so checking for a particular type of
widget event will always work.

Keyboard Focus Events

Base, table, and text widgets can be set to generate keyboard focus events. Generating
and examining keyboard focus events allows you to determine when a given widget
has either gained or lost the keyboard focus—that is, when it is brought to the
foreground or when it is covered by another window.
Event Processing And Callbacks Building IDL Applications



Chapter 22: Widgets 639
Set the KBRD_FOCUS_EVENTS keyword to WIDGET_BASE, WIDGET_TABLE,
or WIDGET_TEXT to generate keyboard focus events. You can then use your event-
handling procedure to cache the widget ID of the last widget (with keyboard focus
events enabled) to have the keyboard focus. One situation where this is useful is when
you have an application menu (created with the MBAR or APP_MBAR keyword to
WIDGET_BASE) and you wish to perform an action in a text widget based on the
menu item selected. Although the event generated by the user’s menu selection has
the menu’s base as its top-level widget ID, if you generate and track keyboard focus
events for the text widget, you can “remember” which widget the action triggered by
the menu selection should affect. Note that in this example, keyboard focus events are
not generated for the menubar’s base.

Interrupting the Event Loop

Beginning with IDL version 5, IDL has the ability to process commands from the
IDL command line while simultaneously processing widget events. This means that
the IDL command will remain active even when widget applications are running.

It is possible to interrupt the event function by sending the interrupt character
(Control-C or Command-C). However, you may find that even after sending the
interrupt, IDL does not immediately interrupt the event loop. IDL will interrupt the
process that is “on top”—that is, if several applications are running at once, the
interrupt will be handled by the first application to receive it.

If your widget application is the only active application, and sending the interrupt
does not cause it to break, move the mouse cursor across (or click on) one of the
widgets.

This works because when IDL is in the event function, it only checks for the interrupt
between event notifications from the window system. Such events do not necessarily
translate one-to-one into IDL widget events because the window system typically
generates a large number of events related to the window system’s operation that IDL
quietly handles. Moving the mouse cursor across the widgets typically generates
some of these events which gives IDL a chance to notice the interrupt and act on it.

Note
Do not interrupt the event loop by placing a STOP or EXIT command in the event-
handler or in a callback routine. The presence of either command will cause the
widget routine to exit with an error.
Building IDL Applications Event Processing And Callbacks



640 Chapter 22: Widgets
Managing Widget Application State

Usually, a widget application or compound widget has some information, or state,
associated with it. This is a natural consequence of the fact that the application is
usually divided into at least two separate routines, one that creates and realizes the
application and another that handles events. These multiple routines need shared
access to certain types of information such as the widget IDs of the component
widgets and data being used by the application.

One obvious answer to this problem is to use a COMMON block to hold the state.
However, this solution is undesirable because it prevents more than a single copy of
the application from running at the same time. It is easy to imagine the chaos that
would ensue if multiple instances of the same application were using the same
common block without some sort of interlocking.

A better solution to this problem is to use the user value of one of the widgets to store
state information for the application. Since this user value can be of any type, a
structure can be used to store any number of state-related values. Using this
technique, multiple instances of the same widget code can exist simultaneously.

In our previous discussions, the HANDLER field of widget event structures was
described without giving any compelling reason for its existence. That is because
event processing and compound widgets must be understood before the need for
HANDLER becomes clear. Recall that when WIDGET_EVENT finds an event to
return, it moves up the widget tree looking for an event-handling routine registered to
the widgets in between its current position and the top-level base of the widget
application. If such a routine is found, it is called with the event as its argument, and
the HANDLER field of this event is set to the widget ID of the widget where the event
routine was found. Since compound widgets have event handlers associated with
their root widget, the HANDLER field gives the event handler the widget ID of the
root widget. This allows the event handler for a compound widget instance to easily
locate the location of its state information relative to this root.

IDL programmers are often tempted to store the state information directly in the user
value of the root widget, but this is not a good idea. The user value of a compound
widget is reserved for the user of the widget, just like any basic widget. Therefore,
you should store the state information in the user value of one of the child widgets
below the root. As a convention, the user value of the first child is often used, leading
to event handlers structured as follows:

FUNCTION EVENT_FUNC, event
; Get state from the first child of the compound widget root:
child = WIDGET_INFO(event.handler, /CHILD)
Managing Widget Application State Building IDL Applications



Chapter 22: Widgets 641
WIDGET_CONTROL, child, GET_UVALUE=state, /NO_COPY

; Execute event-handling code here.

; Restore the state information before exiting routine:
WIDGET_CONTROL, child, SET_UVALUE=state, /NO_COPY

; Return result of function
RETURN, result
END

Notice the use of the NO_COPY keyword in the above example. This keyword
behaves similarly to the TEMPORARY function, and prevents IDL from duplicating
the memory used by the user value during the GET_UVALUE and SET_UVALUE
operations. This is an important efficiency consideration if your code generates many
events or the size of the state data is large.

Sometimes, an application will find that it needs to use the user value of all its child
widgets for some other purpose, and there is no convenient place to keep the state
information. One way to work around this problem is to interpose an extra base
between the root base and the rest of the widgets:

ROOT = WIDGET_BASE(parent)
EXTRA = WIDGET_BASE(root)

In such an approach, the remaining widgets would all be children of EXTRA rather
than ROOT.
Building IDL Applications Managing Widget Application State



642 Chapter 22: Widgets
Compound Widgets

Widget primitives can be used to construct many varied user interfaces, but complex
programs written with them suffer the following drawbacks:

• Large widget applications become difficult to maintain. As an application
grows, it becomes more difficult to properly write and test. The resulting
program suffers from poor organization.

• Good ideas can be difficult to reuse. Most larger applications are constructed
from smaller sub-units. For example, a color table editor might contain control
panel, color selection and color-index selection sub-units. These sub-units are
often complicated tools that could be used profitably in other programs. To
reuse such sub-units, the programmer must understand the existing application
and then transplant the interesting parts into the new program — at best a
tedious and error-prone proposition.

Compound widgets solve these problems. A compound widget is a complete, self-
contained, reusable widget sub-tree that behaves to a large degree just like a primitive
widget. Complex widget applications written with compound widgets are much
easier to maintain than the same application written without them. Using compound
widgets is analogous to using subroutines and functions in programming languages.

Writing Compound Widgets

Compound widgets are written in the same way as any other widget application. They
are distinguished from regular widget applications in the following ways:

• Compound widgets usually have a base widget at the root of their hierarchies.
This base contains the subwidgets that make up the cluster. From the user’s
point of view, this single widget is the compound widget — its children are
hidden from the users view.

• It is important that the compound widget not make use of the base’s user value.
This user value should be reserved for use by the caller of the compound
widget in order to preserve the illusion that the compound widget works just
like any of the basic widgets.

• The root widget of the compound widget always has an event handler function
associated with it via the EVENT_FUNC keyword to the widget creating
function or the WIDGET_CONTROL procedure. This event handler manages
events from its sub-widgets and generates events for the compound widget. By
swallowing events from the widgets that comprise the compound widget and
Compound Widgets Building IDL Applications



Chapter 22: Widgets 643
generating events that represent the compound widget, it presents the illusion
that the compound widget is acting like a basic widget.

• If the compound widget has a value that can be set, it should be assigned a
value setting procedure via the PRO_SET_VALUE keyword to the widget
creating function or the WIDGET_CONTROL procedure.

• If the compound widget has a value that can be retrieved, it should be assigned
a value retrieving function via the FUNC_GET_VALUE keyword to the
widget creating function or the WIDGET_CONTROL procedure.

For an example of how a compound widget might be written, see “Compound Widget
Example” on page 646.
Building IDL Applications Compound Widgets



644 Chapter 22: Widgets
Tips on Creating Widget Applications

The following are some ideas to keep in mind when writing widget applications in
IDL.

• When writing new applications, decompose the problem into sub-problems
and write reusable compound widgets to implement them. In this way, you will
build a collection of reusable widget solutions to general problems instead of
hard-to-modify, monolithic programs.

• Use the GROUP_LEADER keyword to WIDGET_BASE to define the
relationships between parts of your application. Group leadership/membership
relationships make it easy to group widgets appropriately for iconization,
layering, and destruction.

• Use the MBAR (and APP_MBAR) keyword to WIDGET_BASE to create
application-specific menubars. Use keyboard focus events to track which
widget menu options should affect.

• Use existing compound widgets when possible. In particular, use the
CW_BGROUP and CW_PDMENU compound widgets to create menus.
These functions are easier to use than writing the menu code directly, and your
intent will be more quickly understood by others reading your code.

• The many advantages of the XMANAGER procedure dictate that all widget
programs should use it. There are few if any reasons to call the
WIDGET_EVENT procedure directly.

• Use CATCH to handle any unanticipated errors. The CATCH branch can free
any pointers, pixmaps, logical units, etc., to which the calling routine will not
have access, and reset IDL session-wide settings like color tables and system
variables.

• If all else fails, it is possible to use the value of the WIDGET_INFO function
to execute special-case code for each platform’s user interface toolkit. It is
desirable, however, to avoid large-scale special-case programming because
this makes maintenance of the finished program more difficult.

Portability Issues

Although IDL widgets are essentially the same on all supported platforms, there are
some differences that can complicate writing applications that work well everywhere.
The following hints should help you write such applications:
Tips on Creating Widget Applications Building IDL Applications



Chapter 22: Widgets 645
• Avoid specifying the absolute size and location of widgets whenever possible.
(That is, avoid using the XSIZE, YSIZE, XOFFSET, and YOFFSET
keywords.) The different user interface toolkits used by different platforms
create widgets with slightly different sizes and layouts, so it is best to use bases
that order their child widgets in rows or columns and stay away from explicit
positioning. If you must use these keywords, try to isolate the affected widgets
in a sub-base of the overall widget hierarchy to minimize the overall effect.

• When using a bitmap to specify button labels, be aware that some toolkits
prefer certain sizes and give sub-optimal results with others. Also, if you are
specifying a color bitmap, use the BITMAP keyword.

• Try to place text, label, and list widgets in locations where their absolute size
can vary without making the overall application look bad. The font used by the
different toolkits have different physical sizes that can cause these widgets to
have different proportions.

It is reasonably easy to write applications that will work in all environments without
having to resort to much special-case programming. It is very helpful to have a
machine running each environment available so that the design can be tested on each
iteratively until a suitable layout is obtained.
Building IDL Applications Tips on Creating Widget Applications



646 Chapter 22: Widgets
Compound Widget Example

The following example incorporates ideas from the previous sections to show how
you might approach the task of writing a compound widget. The widget is called
CW_DICE, and it simulates a single six-sided die. Figure 22-7 shows the appearance
of XDICE, an application that uses two instances of CW_DICE. XDICE is discussed
on “Using CW_DICE in a Widget Program” on page 652.

Note
cw_dice.pro can be found in the lib subdirectory of the IDL distribution.
xdice.pro can be found in the examples/doc subdirectory of the IDL
distribution. You should examine these files for additional details and comments not
included here. We present sections of the code here for didactic purposes—there is
no need to re-create either of these files yourself.

The CW_DICE compound widget has the following features:

• It uses a button widget. The current value of the die is displayed as a bitmap
label on the button itself. When the user presses the button, the die “rolls” itself
by displaying a sequence of bitmaps and then settles on a final value. An event
is generated that returns this final value.

• Timer events are used to create the rolling effect. This allows the dice to give
the same appearance on machines of varying performance levels.

• The die can be set to a specific value via the SET_VALUE keyword to the
WIDGET_CONTROL procedure. If the desired value is outside of the range 1
through 6, the die is rolled as if the user had pressed the button and a final
value is selected randomly. Using WIDGET_CONTROL does not cause an
event to be issued. This follows the IDL convention that user actions cause
events while programmatic changes do not.

• The current value of the die can be obtained via the GET_VALUE keyword to
the WIDGET_CONTROL procedure.

Almost any compound widget will have some state associated with it. The following
is the state of CW_DICE:

1. The current value.

2. The number of times the die should “tumble” before settling on a final value.

3. The amount of time to take between tumbles.
Compound Widget Example Building IDL Applications



Chapter 22: Widgets 647
4. When a roll is in progress, a count of how many tumbles are left before a final
value is displayed.

5. The bitmaps to use for the 6 possible die values.

6. The seed to use for the random number generator.

The first four items are stored in a per-widget structure kept in one of the child
widget’s user values. Since the bitmaps never change, it makes sense to keep them in
a COMMON block to be accessed freely by all the CW_DICE routines. It also makes
sense to use a single random number seed for the entire CW_DICE class rather than
one per instance to avoid the situation where multiple dice, having been created at the
same time, have the same seed and thus display the same value on each roll.

It is rare that the use of a COMMON block in a compound widget makes sense.
Notice, however, that we’re only keeping read-only data (bitmaps) or data that can be
overwritten at any time with no negative effects (random number generator seed).

Given the above decisions, it is now possible to write the CW_DICE procedure:

;Value is an optional argument that lets the caller set the initial
;die value to a value between 1 and 6. UVALUE will simply be passed
;on to the root base of CW_DICE. The TUMBLE keywords let the user
;adjust the tumble count and period.
PRO cw_dice, parent, value, UVALUE=uvalue, $

TUMBLE_CNT=tumble_cnt, TUMBLE_PERIOD=tumble_period

;This COMMON block holds the bitmaps and random number generator
;seed.
COMMON CW_DICE_BLK, seed, faces

;Provide defaults for the keywords.
IF NOT KEYWORD_SET(tumble_cnt) THEN tumble_cnt=10

;Guard against a nonsensical request.
IF (tumble_cnt lt 1) then tumble_cnt=10

;Default tumble period in seconds.
IF NOT KEYWORD_SET(tumble_period) THEN tumble_period=.05
IF (tumble_period lt 0) then tumble_period=.05
IF NOT KEYWORD_SET(uvalue) uvalue=0

;Return to caller if an error occurs.
ON_ERROR, 2

;Generate the die face bitmaps. The actual code for this is omitted
;here because it doesn’t add much to the example, but it can be
Building IDL Applications Compound Widget Example



648 Chapter 22: Widgets
;found in the CW_DICE.PRO file.
faces=LONARR(192)

;Use RANDOMU to pick the initial value of the die unless the user
;provided one.
IF(N_ELEMENTS(value) EQ 0) THEN value = FIX(6*RANDOMU(seed) + 1)

;Construct a state variable for this instance.
state = { value:value, tumble_cnt:FIX(tumble_cnt), $

tumble_period:tumble_period, remaining:0 }

;Create the base widget, passing the UVALUE through for the caller.
;Notice that we also register an event function and GET/SET value
;routines which will be called by WIDGET_CONTROL on our behalf.
base = WIDGET_BASE(parent, UVALUE=uvalue, $

EVENT_FUNC='CW_DICE_EVENT', $
FUNC_GET_VALUE='CW_DICE_GET_VALUE', $
PRO_SET_VALUE='CW_DICE_SET_VALUE')

;Create the die, setting its bitmap to the current value.
die = WIDGET_BUTTON(base, VALUE=faces[*, *, value-1])

;Save the state in the first child’s user value. Notice the use of
;the NO_COPY keyword for efficiency.
WIDGET_CONTROL, WIDGET_INFO(base, /CHILD), $

SET_UVALUE=state, /NO_COPY

;The result of a compound widget is always the ID of its topmost
;widget.
RETURN, base

END

The above code makes reference to two routines named CW_DICE_SET_VAL and
CW_DICE_GET_VAL. By using the FUNC_GET_VALUE and PRO_SET_VALUE
keywords to WIDGET_BASE, WIDGET_CONTROL can call these routines
whenever the user makes a WIDGET_CONTROL SET_VALUE or GET_VALUE
request:

;This is the SET_VALUE routine for CW_DICE. The number and type of
;the arguments is defined by WIDGET_CONTROL. Id is the widget ID of
;a CW_DICE, and value is the user’s requested value.
PRO cw_dice_set_val, id, value

COMMON CW_DICE_BLK, seed, faces

;Get the ID of the first child of the CW_DICE widget. This is where
;the state information is stored.
stash = WIDGET_INFO(id, /CHILD)
Compound Widget Example Building IDL Applications



Chapter 22: Widgets 649
;Get the state structure.
WIDGET_CONTROL, stash, GET_UVALUE=state, /NOCOPY

;If the value is outside the range [1,6] then roll the die as if
;the user pressed the button.
if (value < 1) or (value > 6) THEN BEGIN

;CW_DICE_ROLL rolls the dice. It’s a separate function because our
;event handler also needs to use it.
CW_DICE_ROLL, stash, state

ENDIF ELSE BEGIN
;If the value is in the range [1,6] then simply set the die to that
;value without rolling.
state.value=value

;Set the new bitmap on the button. We take advantage of the fact
;that stash must be the widget ID of the button widget, since the
;base only has one child.
WIDGET_CONTROL, stash, SET_VALUE=faces[*,*, value-1]

ENDELSE

;Restore the state in the child UVALUE.
WIDGET_CONTROL, stash, SET_UVALUE=state, /NO_COPY

END

;This is the GET_VALUE routine for CW_DICE. The number and type of
;the arguments is defined by WIDGET_CONTROL. Id is the widget ID of
;a CW_DICE. The return value of this function must be the current
;value of the compound widget, as defined by that widget.
FUNCTION cw_dice_get_val, id

;Get the ID of the first child of the CW_DICE widget. This is where
;the state information is stored.
stash = WIDGET_INFO(id, /CHILD)

;Get the state structure.
WIDGET_CONTROL, stash, GET_UVALUE=state, /NO_COPY

;Get the current value from the state structure.
ret = state.value

;Restore the state in the child UVALUE.
WIDGET_CONTROL, stash, SET_UVALUE=state, /NO_COPY
Building IDL Applications Compound Widget Example



650 Chapter 22: Widgets
RETURN, ret

END

CW_DICE_SET_VALUE makes reference to a procedure named CW_DICE_ROLL
that does the actual dice rolling. Rolling is implemented as follows:

1. If this is the initial call to CW_DICE_ROLL, then pick the final value that will
end up being displayed and enter this into the widget’s state. Hence,
WIDGET_CONTROL, /GET_VALUE reports the final value instead of one of
the intermediate “tumble” values no matter when it is called.

2. If this is not the final tumble, pick a random intermediate value and display
that. Then, make another timer event request for the next tumble.

3. If this is the final tumble, use the saved final value.

4. CW_DICE_ROLL works in cooperation with the event handler function for
CW_DICE. Each timer event causes the event handler to be called and the
event handler in turn calls CW_DICE_ROLL to process the next tumble.

;Roll the specified die. Dice is the widget ID of the button
;holding the bitmap, and state is the state as extracted from the
;CW_DICE UVALUE by the caller.
PRO cw_dice_roll, dice, state
COMMON CW_DICE_BLK, seed, faces

;First time.
IF (state.remaining EQ 0) THEN BEGIN

;Set the counter for the number of tumbles remaining.
state.remaining = state.tumble_cnt

;Determine final value now.
state.value = FIX(6*RANDOMU(seed)+1)

ENDIF

;Last time.
IF (state.remaining EQ 1) THEN BEGIN

;Use the previously-saved final result.
value = state.value

;Not the last time.
ENDIF ELSE BEGIN

;Generate an intermediate value.
Compound Widget Example Building IDL Applications



Chapter 22: Widgets 651
value = FIX(6 * RANDOMU(seed) + 1)

;Since this isn’t the last tumble, make the next timer request.
WIDGET_CONTROL, dice, TIMER=state.tumble_period

ENDELSE

;Display the correct bitmap.
WIDGET_CONTROL, dice, SET_VALUE=faces[*,*, value-1]

;Decrement tumble counter.
state.remaining = state.remaining-1

END

This leads us to the event handler function:

FUNCTION cw_dice_event, event

;The primary use for the HANDLER field of event structures is to
;make finding the root of a compound widget easy.
base = event.handler

;Get the ID of the first child of the CW_DICE widget. This is where
;the state information is stored.
stash = WIDGET_INFO(base, /CHILD)

;Get the state structure.
WIDGET_CONTROL, stash, GET_UVALUE=state, /NO_COPY

;Roll the die and display a new bitmap.
CW_DICE_ROLL, stash, state

;This event handler expects to see button press events generated
;from a user action as well as TIMER events from CW_DICE_ROLL. We
;only want to issue events for the button presses. Even though the
;die still has several tumbles left, we know that the final value
;is in the state now.
if (TAG_NAMES(event, /STRUCTURE_NAME) NE 'WIDGET_TIMER') THEN $

;Create an event.
ret = { CW_DICE_EVENT, ID:base, TOP:event.top, $

HANDLER:0L, VALUE:state.value} $
ELSE ret = 0
;By not returning an event structure, we cause the event to be
;swallowed by WIDGET_EVENT.

;Restore the state in the child UVALUE.
WIDGET_CONTROL, stash, SET_UVALUE=state, /NO_COPY
Building IDL Applications Compound Widget Example



652 Chapter 22: Widgets
RETURN, ret

END

This results in the following:

Using CW_DICE in a Widget Program

Having written a compound widget, it is natural to want to use it in a real application.
We can use CW_DICE to implement an application named XDICE. XDICE displays
two dice as well as a “Roll” button. Pressing either die causes it to roll individually.
Pressing the “Roll” button causes both dice to roll together. A text widget at the
bottom always displays the current value in textual form. XDICE is shown in the
preceeding figure.

Note
xdice.pro can be found in the examples/doc subdirectory of the IDL
distribution. You can run the program from the IDL distribution by entering:

xdice

at the IDL command prompt. See “Running the Example Code” on page 591 if IDL
does not run the program as expected. You should examine the files for additional
details and comments not included here.

;Providing standard keywords usually found in other widget
;applications is a nice finishing touch. GROUP is easy to support
;since we just pass it to XMANAGER.
PRO xdice, GROUP=group

Figure 22-7: The XDICE Example Program
Compound Widget Example Building IDL Applications



Chapter 22: Widgets 653
;Create the top-level base that holds everything else.
base = WIDGET_BASE(/COLUMN, title='Pair O'' Dice')

;A button group compound widget is used to implement the Done and
;Roll buttons. The SPACE keyword simply causes the buttons to be
;spread out from each other.
bgroup = CW_BGROUP(base, ['Done', 'Roll'], /ROW, SPACE=50)

;Create a row base to hold the dice. XPAD moves the first die away
;from the left side of the application and helps center the dice.
dice = WIDGET_BASE(base, /ROW, XPAD=20)

;The first die.
d1 = CW_DICE(dice)

;The second die.
d2 = CW_DICE(dice)

;We need the initial dice values to set the label appropriately. We
;could have specified initial values for the calls to CW_DICE
;above, but it seems better to let them be different on each
;invocation.
WIDGET_CONTROL, d1, GET_VALUE=d1v
WIDGET_CONTROL, d2, GET_VALUE=d2v

;Format the initial label text.
str=STRING(FORMAT='("Current Value: ",I1,", ",I1)', d1v, d2v)

;This label is used to textually display the current dice values.
label = WIDGET_LABEL(base, value=str)

;Information that is needed in the event handler.
state = { bgroup:bgroup, d1:d1, d2:d2, label:label }

;Save useful information in the base UVALUE, and realize the
;application.
WIDGET_CONTROL, base, SET_UVALUE=state, /NO_COPY, /REALIZE

;Pass control to XMANAGER.
XMANAGER, 'XDICE', base, GROUP=group

END

The following event handler is called by XMANAGER to process events for the
XDICE application:

PRO xdice_event, event
Building IDL Applications Compound Widget Example



654 Chapter 22: Widgets
;Recover the state.
WIDGET_CONTROL, event.top, GET_UVALUE=state, /NO_COPY

;Either the Done or Roll button was pressed.
IF (event.id EQ state.bgroup) THEN BEGIN

;The Done button.
IF (event.value EQ 0) THEN BEGIN

WIDGET_CONTROL, /DESTROY, event.top;Destroy the application.

;Return now to avoid trying to update the widget label we
;just destroyed.
RETURN

;The Roll button.
ENDIF ELSE BEGIN

;Roll the first die by asking for an out of range value.
WIDGET_CONTROL, state.d1, SET_VALUE=-1

;Roll the second die.
WIDGET_CONTROL, state.d2, SET_VALUE=-1

ENDELSE
ENDIF

;Get value of first die.
WIDGET_CONTROL, state.d1, GET_VALUE=d1v

;Get value of second die.
WIDGET_CONTROL, state.d2, GET_VALUE=d2v

;Format the initial label text.
str = STRING(format='("Current Value: ",I1,", ",I1)', d1v, d2v)

;Update the label.
WIDGET_CONTROL, state.label, SET_VALUE=str

;Restore the state.
WIDGET_CONTROL, event.top, SET_UVALUE=state, /NO_COPY

END
Compound Widget Example Building IDL Applications



Appendix A:

VMS Floating-Point
Arithmetic in IDL

The following topics are discussed in this appendix:
Overview . . . . . . . . . . . . . . . . . . . . . . . . . .  656
VAX Floating-Point Format Background .  657
Transition Issues  . . . . . . . . . . . . . . . . . . . .  659
A Warning About Floating-Point Conversions
in IDL  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  661

A Strategy for Converting VMS Programs  662
Using CALL_EXTERNAL . . . . . . . . . . . . 664
A Note on the VMS G Float Format  . . . . . 666
Building IDL Applications 655



656 Appendix A: VMS Floating-Point Arithmetic in IDL
Overview

All VMS versions of IDL through release 5.0 used VAX F and D floating-point
formats. In contrast, all non-VMS versions of IDL use a different and more modern
floating-point standard (IEEE 754). Starting with IDL release 5.1, VMS IDL has
been converted to also support IEEE floating-point formats rather than the now
obsolete VAX formats. This appendix explains the history behind these decisions and
discusses how to convert older VMS IDL programs.
Overview Building IDL Applications



Appendix A: VMS Floating-Point Arithmetic in IDL 657
VAX Floating-Point Format Background

The floating-point format used by a program such as IDL is determined entirely by
the computer hardware upon which it runs. In the early years of computing it was
common for different machines to have incompatible floating-point formats. In the
1970s and 1980s, PDP-11 and VAX minicomputers were widely used for scientific
computation, and their floating-point format (known as F and D floating) became the
de facto standard for science.

Over the years, the computing industry has converged upon a floating-point standard
known as IEEE 754, and commonly referred to as “ieee floating” or “ieee
arithmetic”, and other formats (including the VAX) have diminished in importance.
Now, all common computing hardware uses the IEEE formats, which has significant
advantages over earlier ones:

• Binary data is portable to almost all current and foreseeable computing
hardware and operating systems, requiring at most simple byte swapping.

• Special Infinity and Not A Number (NaN) values for undefined computations
allow exceptional computations to be carried out in a well defined manner.

This convergence gained momentum in the 1980s as workstations and personal
computers came into prominence. The result is that non-VMS versions of IDL have
always used IEEE floating-point—a significant difference between them and the
VMS version. VAX/VMS IDL stayed with the VAX formats to provide backwards
compatibility with existing programs and data, and because the VAX hardware does
not support the IEEE formats.

In the early 1990s, Digital Equipment Corporation released a new hardware
architecture named ALPHA to replace the aging VAX line. The native floating-point
format for ALPHA is IEEE, but it also supports the VAX formats for backwards
compatibility. When IDL was ported to ALPHA/VMS, it was tempting to switch to
IEEE floating-point in order to bring it in line with all other computers. However, the
decision was made to stay with the VAX formats in order to maximize compatibility
with our VMS customers existing binary data. Since support for the VAX was not
discontinued at that time, Research Systems felt that it was important for all VMS
implementations to be compatible with each other.

With IDL 5.1, the floating-point format for ALPHA/VMS IDL has been changed to
IEEE. There are many reasons for this decision:

• IDL no longer runs on VAX hardware, and ALPHA supports IEEE natively.
There is no longer a hardware barrier to conversion.
Building IDL Applications VAX Floating-Point Format Background



658 Appendix A: VMS Floating-Point Arithmetic in IDL
• The VAX formats are obsolete and no longer supported by any modern
computing hardware, making an eventual switch inevitable.

• The lack of special NaN and Infinity values prevented important IDL features
from being useful under VMS, and differences in floating-point precision
made some numerical methods behave differently than on the other platforms.

• The ALPHA implementation of VAX D float has three fewer bits of precision
than VAX hardware, making that format even less attractive.

• Unlike the past, it is rare for computing sites to be VMS-only these days. Most
VMS users also use Unix workstations and personal computers, and those
machines all use the IEEE floating-point representation. These sites have
already addressed the issue of moving data between these formats, and are
therefore in a position to move to IEEE under VMS. For most sites, the fact
that VMS IDL did not use IEEE floating-point had become a primary barrier to
moving completely beyond the transition to IEEE.
VAX Floating-Point Format Background Building IDL Applications



Appendix A: VMS Floating-Point Arithmetic in IDL 659
Transition Issues

Most existing VMS applications will work with the IEEE version of VMS IDL
without code changes. The slight differences in precision and range between the
VAX and IEEE formats do not usually cause problems as long as you are aware of
the limitations discussed in “A Warning About Floating-Point Conversions in IDL”
on page 661. Since most VMS sites also use non-VMS computers, such conversions
are probably already common at your site.

Transition issues therefore center around permanent data kept in disk files and off-
line storage. Within IDL, the focus is therefore on data entering and leaving IDL:

Input/Output

Programs that read binary data in VAX format will have to convert the data to IEEE
format so that IDL can understand it. Similarly, programs that write data to a file that
is supposed to contain VAX format data must convert the data to VAX format before
writing it. The BYTEORDER procedure has a number of new keywords designed to
perform this operation. More conveniently, the VAX_FLOAT keyword to the OPEN
routines causes all binary data input or output via ASSOC, READU, or WRITEU to
be automatically converted to the VAX floating-point format.

CALL_EXTERNAL

Programs that pass floating-point data to or from code dynamically linked to IDL
using CALL_EXTERNAL may need to be adjusted. The options, in order of
preference, are:

1. Recompile the linked code to use the IEEE floating-point format (that is, using
the /IEEE_FLOAT/IEEE_MODE=DENORM compiler options).

2. Use the VAX_FLOAT keyword to CALL_EXTERNAL to  automatically
translate all data to and from VAX format as necessary.

3. Convert data to or from VAX format using BYTEORDER.

Again, remember that conversion from one format to another is not without
consequences. Please read “A Warning About Floating-Point Conversions in IDL” on
page 661 before making a final decision.
Building IDL Applications Transition Issues



660 Appendix A: VMS Floating-Point Arithmetic in IDL
LINKIMAGE

Programs that pass floating-point data to or from code dynamically linked to IDL
using LINKIMAGE require that the linked code be recompiled to use the IEEE
floating-point format (that is, using the /IEEE_FLOAT/IEEE_MODE=DENORM
compiler options).

SAVE and RESTORE

While data also enters and leaves IDL via the SAVE and RESTORE procedures,
there is no IEEE transition issue for such data. The portable XDR format of SAVE
files is already compatible with IEEE. Furthermore, RESTORE automatically
converts the data in old VMS format SAVE files to IEEE format as it reads the data,
allowing data in the older format to be recovered as well.
Transition Issues Building IDL Applications



Appendix A: VMS Floating-Point Arithmetic in IDL 661
A Warning About Floating-Point Conversions
in IDL

The VAX formats are obsolete and IEEE is the standard for modern computing
hardware. With or without IDL, you will eventually find it necessary to convert your
existing VAX data to IEEE format if it is to remain usable. In doing so, you should
understand that translation of floating-point values from one format to the other and
back is not a completely reversible operation, and should be avoided when possible.
Two important differences between the VAX and IEEE formats can lead to data loss:

1. The VAX floating-point format lacks support for the IEEE special floating-
point values NaN and Infinity. Their special meaning is lost when they are
converted to VAX format, and the meaning cannot be recovered.

2. Differences in precision and range can also cause information to be lost in both
directions.

The conversion of existing VAX format data to IEEE cannot be avoided, and the
information lost is usually small. Once the data is converted to IEEE, however, it is
best to keep it and any results computed from it in IEEE format and avoid converting
it back to the VAX format for storage.

For this reason, we recommend recompiling all code called via CALL_EXTERNAL
to use the IEEE floating-point format rather than using the VAX_FLOAT keyword.
New data should be written to files in IEEE format whenever possible.
Building IDL Applications A Warning About Floating-Point Conversions in IDL



662 Appendix A: VMS Floating-Point Arithmetic in IDL
A Strategy for Converting VMS Programs

Starting with IDL 5.1, all IDL platforms, including ALPHA/VMS, use the IEEE
floating-point format. VMS sites upgrading from a previous version of IDL are faced
with the issue of how to manage this conversion. We recognize that such a
conversion cannot occur all at once, and will instead be carried out gradually. We
suggest the following general approach to making the transition.

Step 1: Ensure the Stability of Existing Operations

To ensure that your applications continue to work, keep IDL 5.0.x installed on your
systems, and use it to run existing applications. Install the IEEE version of IDL in
parallel with the older 5.0.x version and keep both available. Then, shift to the newer
IEEE version as applications and data are ported.

Step 2: Use Compatibility Mode To Make The Initial Port

IEEE versions of VMS IDL can be started with the /VAX_FLOAT command
qualifier. This causes the default value of the VAX_FLOAT keywords to OPEN and
CALL_EXTERNAL to be TRUE instead of FALSE as is usually the case. This is
often sufficient to allow programs that do not use LINKIMAGE to run with IDL 5.1
while preserving the VAX format of all external data.

Note
You can also use the VAX_FLOAT function to check or change the default value of
the keywords to OPEN and CALL_EXTERNAL at runtime.

Step 3: Full Port

To move your code fully to IEEE VMS without using the special compatibility mode
(the /VAX_FLOAT command qualifier or calls to the VAX_FLOAT function) you
will need to take the following steps:

1. Recompile dynamically linked code to use the IEEE floating-point format (that
is, using the /IEEE_FLOAT/IEEE_MODE=DENORM compiler options).

2. If possible, convert data files to IEEE format, using the IEEE version of IDL to
read the VAX format data and then write a new version of the file in IEEE
format.
A Strategy for Converting VMS Programs Building IDL Applications



Appendix A: VMS Floating-Point Arithmetic in IDL 663
3. If data files cannot be converted to IEEE format, adjust the OPEN statements
that access them to include the VAX_FLOAT keyword so that IDL converts
the data on input and output.
Building IDL Applications A Strategy for Converting VMS Programs



664 Appendix A: VMS Floating-Point Arithmetic in IDL
Using CALL_EXTERNAL

The VAX_FLOAT keyword to CALL_EXTERNAL can be used to make the IEEE
versions of VMS IDL properly pass floating-point data to external code compiled for
the VAX floating-point format. However, IDL 5.0.x and earlier did not accept this
keyword. This makes it difficult to write a CALL_EXTERNAL statement that can be
used under both versions at the same time.

The VAX_CALL_EXT routine shown below can be used to solve this problem. If
you compile and use VAX_CALL_EXT it instead of CALL_EXTERNAL, your
program will be able to specify the VAX_FLOAT keyword in all cases, and the older
IDL versions will simply ignore the keyword as a side effect of keyword inheritance.

Enter the following IDL code in a file named call_ext.pro and include it in your
IDL path. Then use the VAX_CALL_EXT function with the VAX_FLOAT keyword
wherever you would otherwise use CALL_EXTERNAL.

FUNCTION vax_call_ext, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, $
a11, a12, a13, a14, a15, a16, _EXTRA=e

CASE N_PARAMS() OF
2: ans = CALL_EXTERNAL(a1,a2,_EXTRA=e)
3: ans = CALL_EXTERNAL(a1,a2,a3,_EXTRA=e)
4: ans = CALL_EXTERNAL(a1,a2,a3,a4,_EXTRA=e)
5: ans = CALL_EXTERNAL(a1,a2,a3,a4,a5,_EXTRA=e)
6: ans = CALL_EXTERNAL(a1,a2,a3,a4,a5,a6,_EXTRA=e)
7: ans = CALL_EXTERNAL(a1,a2,a3,a4,a5,a6,a7,_EXTRA=e)
8: ans = CALL_EXTERNAL(a1,a2,a3,a4,a5,a6,a7,a8,_EXTRA=e)
9: ans = CALL_EXTERNAL(a1,a2,a3,a4,a5,a6,a7,a8,a9,_EXTRA=e)
10:ans = CALL_EXTERNAL(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,_EXTRA=e)
11:ans = CALL_EXTERNAL(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11, $

_EXTRA=e)
12: ans = CALL_EXTERNAL(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10, $

a11,a12,_EXTRA=e)
13: ans = CALL_EXTERNAL(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,$

a11,a12,a13,_ex,tra=e)
14: ans = CALL_EXTERNAL(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10, $

a11,a12,a13,a14,_EXTRA=e)
15: ans = CALL_EXTERNAL(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10, $

a11,a12,a13,a14,a15,_EXTRA=e)
16: ans = CALL_EXTERNAL(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10, $

a11,a12,a13,a14,a15,a16,_EXTRA=e)
ENDCASE
RETURN, ans
END
Using CALL_EXTERNAL Building IDL Applications



Appendix A: VMS Floating-Point Arithmetic in IDL 665
Note
You do not need to enter the code for vax_call_ext.pro by hand. It is included
in the examples/external subdirectory of the IDL distribution.
Building IDL Applications Using CALL_EXTERNAL



666 Appendix A: VMS Floating-Point Arithmetic in IDL
A Note on the VMS G Float Format

In addition to the F and D floating-point formats, VMS systems also support a format
known as G float, which has fewer mantissa bits than D float and larger range. On the
VAX, this format was rarely used, and IDL has never supported it. Under
ALPHA/VMS, however, G float is the default for DEC language compilers. This
makes it very easy to inadvertently build programs that produce G float data. G float
offers little advantage, if any, over double precision IEEE, while causing
compatibility issues similar to those caused by F and D float. For this reason,
Research Systems recommends that you not use G float unless you have specific
requirements for it. To compile your programs to produce IEEE format floating
point, specify the /IEEE_FLOAT command qualifier to the compiler. There are
several levels of compiler support for IEEE math, controlled by the /IEEE_MODE
qualifier. IDL is built with the options /IEEE_FLOAT/IEEE_MODE=DENORM.

If you need to use G float data with IDL, you will need to manually convert the data
to and from IEEE format. The DTOGFLOAT and GFLOATTOD keywords to the
BYTEORDER procedure can be used for this task.
A Note on the VMS G Float Format Building IDL Applications



Index

Symbols
character

escape sequences, 190
!ERROR_STATE system variable, 415, 425

MSG, 422
SYS_MSG, 422

# of Rows/Columns base property, 546
# operator, 24
## operator, 25
% character

printf-style format code, 187
.prc file

testing in project, 336
.prj files, 326
< operator, 23
> operator, 23
? character

conditional expression, 30
?: ternary operator, 30
^ character, 23
_EXTRA keyword (keyword inheritance), 301
_REF_EXTRA keyword (keyword inherit-
ance), 301

Numerics
64-bit data type

long, 40
unsigned long, 40

A
abbreviating keywords, 296
about IDL, 15
Building IDL Applications 667



668
active command line, 613
actual parameters, 296
adding

files to a project, 332
help files, 450

addition operator, 22
Alignment base property, 547
Alignment button property, 558
Alignment label property, 566
Alignment table property, 581
Allow Closing base property, 547
Allow Moving base property, 548
Altura Software, 452
AND operator, 26
anonymous structures, 98
applications, written in IDL, 14
arguments

supplying values for missing, 381
arithmetic errors, 427
arrays

concatenation, 25
data type, determining, 382
definition, 84
determing size and type, 382
efficient accessing, 213
multiplying, 24
of structures, 108
subscript ranges, 90
using as subscripts, 92

assignment, 477
pointers, 129
statement, 258

assignment operator, 22
ASSOC function, 154
associated I/O, 209
attributes

draw widget, 575
droplist, 570
label widget, 566
listbox, 572
table widget, 581

automatic compilation, 293
automatic structure definition, 114, 468

B
background tasks, widgets, 628
backslash character

escape sequences, 190
base widgets

attributes, 546
bulletin board bases, 632
defined, 592
events, 555
using, 508

binary trees, 143
bitmap

files
standard file format I/O routines, 240

Bitmap button property, 558
Bitmap Editor

opening, 558
tools, 519
using, 517

bitmaps
adding to buttons, 517
transparent, 518

block of statements, 269
BMP files

adding to button widgets, 517
displaying on buttons, 558
standard file format I/O routines, 240
supplied, 518

Boolean operators, 26
breakpoints

debugging, 437
editing, 439, 441
Macintosh platform, 441
UNIX platform, 438
Windows platform, 438

Bristol Technology, 452
bubble sort, 141
Index Building IDL Applications



669
bugs, see debugging.
building

order in project, 344
projects, 347

bulletin board bases, 632
button widgets

adding menus to, 517
defined, 592
setting attributes, 558
setting properties, 557
using, 508

byte
arguments and strings, 65
data type, 40

C
CALL_EXTERNAL, 664

VMS issues, 659
calling

mechanism for procedures, 311
CALLS keyword, 424
CANCEL keyword, 417
caret, 23
carrot, 23
case

uppercase/lowercase, 67
change value event, 569
changing

widget values, 626
characters

non-printable, 48
checkbox widgets

creating, 557
laying out, 558
setting attributes, 558
setting properties, 557

checkboxes, 557
using, 509

chromacoded editor (Windows), 249

class
object, 465
structure, 467
structures

zeroed, 467
closing

files (overview), 156
projects, 328

code
IDL GUIBuilder generated, 502
modifying generated, 502
using the IDL editor, 246

Color Model
draw area property, 575

color tables
example, 504

colors
manipulation compound widgets, 594

Colors draw area property, 575
Column Labels table property, 581
comments, 255
common blocks, 56

widgets and, 640
compiling

all files in a project, 346
changing default rules, 313
COMPILE_OPT, 313
from a project, 335
modified files in a project, 346

complex
numbers, 46
numbers, exponentiation, 23

complex data type, 41
Component Sizing common property, 540
compound statement, 269
compound widgets, 594, 642

color manipulation, 594
data entry, 594
example, 532
handling events, 543
image manipulation, 595
Building IDL Applications Index



670
in IDL GUIBuilder code, 532
orientation, 595
user interface, 595
writing, 646

concatenation
array, 25
string, 63

conditional expression, 30
conditional statements, 272
constants

complex, 46
decimal, 43
double-precision, 45
floating-point, 45
hexadecimal, 43
integer, 43
ivalues, 44
octal, 43
string, 46

context, 414
controls see widgets
creating

.sav file from a project, 347
heap variables, 123
help systems, 450
IDL runtime distribution, 351
projects, 326

creating multiple, 557
cursor

hourglass, 627
CW_DICE function, 646
CW_PDMENU function, 623

D
dangling references, 133, 472
data entry

compound widgets, 594
data types

64-bit
long, 40

unsigned long, 40
byte, 40
complex, 41
determining, 382
double-precision complex, 41
double-precision floating-point, 40
floating-point, 40
integer, 40
long integer, 40
string, 41
unsigned

integer, 40
long, 40

debugging
command example, 435
setting breakpoints, 438
stepping into a program, 436
stepping into versus over, 436
stepping over routines, 437
trace execution, 436
See also breakpoints

decimal, 43
defining method routines, 481

note for Windows 3.11 users, 484
deleting

files in a project, 334
delimiters, string, 47
dereference operator, pointers, 129
destroying

objects, 476
widgets, 626

determining variable scope, 376
DIALOG_PRINTERSETUP function, 596
DIALOG_PRINTJOB function, 596
dialogs

file selection, 595
printing, 596

disappearing variables, 414
Display Headers table property, 581
distributing IDL applications, 14
Index Building IDL Applications



671
distribution
creating, 351

division operator, 22
double-precision

complex data type, 41
floating-point data type, 40

draw widgets, 619
attributes, 575
backing store, 577
color model, 575
colors used in, 575
defined, 592
events, 578
example application using, 499
graphics type, 576
mouse events, 578
mouse motion events, 579
properties, 575
renderer type, 576
scrolling, 577
scrolling area, 577, 578
using, 510
view change events, 579
viewport move, 580

droplist widgets
defined, 593
events, 570
initial value, 570
select event, 571
setting attributes, 570
setting properties, 570
title, 570
using, 509

E
Editable table property, 582
Editable text property, 561
editing

a source file from a project, 335

editors
external (Motif), 249

efficiency
constants, 360
constants, correct type, 360
IDL implementation, 368
IF statements, 356
invariant expressions, 361
programming, 354
system functions and procedures, 359
vector and array operations, 357

encapsulation, 465
Entering Procedure Definitions, 306
EQ operator, 29

object references, 478
pointers, 132

errors
default error-handling mechanism, 413
floating-point underflow, 427
handling, 412

input/output, 420
ON_ERROR procedure, 419

handling (CATCH procedure), 415
input/output, 420
math, 427
signaling (MESSAGE procedure), 422
system variables, 425
system variables for, 425

event driven programming, 590
events, 584

button press, 560
common properties, 543
compound, handling, 543
destruction, 544
draw area mouse, 578
draw area mouse motion, 579
draw area view changes, 579
draw area widget, 578
draw viewport move, 580
droplist, 570
droplist select, 571
Building IDL Applications Index



672
focus, 555
handling in IDL GUIBuilder code, 502, 525,
526, 529, 534
interrupting the event loop, 639
keyboard focus, 638
kill request, 555
listbox, 573
listbox selection, 573
post creation, 545
realize, 544
release for buttons, 559
setting button, 560
slider, 569
slider change value, 569
table cell select, 585
table column width change, 585
table data invalid, 587
table focus, 586
table insert character, 586
table insert string, 587
table text delete, 586
table text selection, 587
text delete, 563
text focus, 563
text inserts, 564, 564
text selection, 564
text widget, 563
timer, 544, 628
tracking, 544
widget, 611

explicitly formatted I/O, 153, 167
exponentiation operator, 23
exporting

projects, 350
expressions

data type, determining, 382
efficiency of evaluation, 355
structure of, 34, 36
type of, 34

external editors (Motif), 249
EXTRA keyword (keyword inheritance), 301

F
false, definition of, 273
file

adding to a project, 332
compiling from a project, 335
compiling in a project, 346, 346
editing from a project, 335
moving in a project, 333
removing from a project, 334
setting properties for a project, 336

file units, 157
files

closing (overview), 156
end-of-file, 220
file units, see file units
flushing file units, 219
formats

BMP, 240
Interfile, 240
JPEG, 240
NRIF, 240
PICT, 240
PNG, 240
PPM, 240
SRF, 240
TIFF, 240
X11 Bitmap, 240
XWD, 240

help and information, 217
IDL GUIBuilder

generated, 502
generating code, 523
generating resource, 523
IDL code, 523
regeneration, 524
resource, 523

indexed, 231
input/output, 147
locating, 214
logical unit number, 157
Macintosh-specific information, 238
Index Building IDL Applications



673
manipulation operations, 214
modifying generated, 502
multiple structures, 212
opening, 155
pointer position, 220
record-oriented, 229
selection dialogs, 595
storing in a project, 324
VMS-specific information, 227
Windows-specific information, 237

FILES keyword, 217
FIND_BY_UNAME keyword, 526
FINDFILE function, 214
FINITE function, 430
Floating base property, 548
floating point conversions, 661
floating-point

data type, 40
errors, 427
underflow errors, 427

floating-point format, 657
focus events, 638
formal parameters, 296
format codes, 172
formatted I/O, 153
FORWARD_FUNCTION statement, 294
Frame common property, 541
free format I/O, 153, 162
freeing pointers, 137
FSTAT function, 217
functions, 306

forward definition, 294
how IDL resolves, 308

G
GE operator, 29
geometry of widgets, 631
GET_KBRD function, 221
GOTO statement, 288
Graphics Type draw area property, 576

Grid Layout base property, 549
group

moving files in a project, 333
GT operator, 29
GUIBuilder, see IDL GUIBuilder

H
Handle Events common event, 543
heap variables, 121, 471

creating, 123
leakage, 134, 472
object, 121, 465, 471, 471
pointer, 125
saving and restoring, 124

Height listbox property, 572
Height text property, 561
help files

alternatives to online help, 458
creating a help button, 455
displaying

text with XDISPLAYFILE, 460
displaying text files, 460

hexadecimal, 43
horizontal slider, see slider widgets
hourglass cursor, 627
HTML, 452

using for help files, 459
HyperHelp, 452
HyperText Markup Language, 452

I
IDL

applications, distributing, 14
Code Profiler, 369
pointers, 126
runtime licensing, 14

IDL GUIBuilder, 492
# of Rows/Columns property, 546
Building IDL Applications Index



674
Alignment label property, 566
Alignment property, 547, 558
Alignment table property, 581
Allowing Closing property, 547
Allowing Moving property, 548
base widget attributes, 546
base widget events, 555
base widget properties, 546
base widgets, using, 508
Bitmap Editor, 517
Bitmap property, 558
button attributes, 558
button widgets, using, 508
buttons, adding bitmaps, 517
buttons, adding menus, 517
checkbox attributes, 558
checkbox widgets, using, 509
checkboxes, creating, 557
Color Model draw area property, 575
color table example, 504
Colors draw area property, 575
Column Labels table property, 581
common events, 543
compiling and running example, 505
Component Sizing property, 540
copying or cutting widgets, 521
creating draw area, example, 499
creating multiple checkboxes, 557
creating multiple radio buttons, 557
defining menus, example, 496
deleting widgets, 521
Display Headers table property, 581
draw area events, 578
draw widget properties, 575
draw widgets, using, 510
droplist attributes, 570
droplist events, 570
droplist properties, 570
droplists, using, 509
Editable table property, 582
Editable text property, 561

event code, example, 534
event code, handling example, 526
event code, integrating interfaces, 529
event code, understanding, 525
example application, 496
files, generating multiple times, 524
files, IDL code, 523
files, portable resource, 523
Floating property, 548
Frame property, 541
generating code, 502, 523
generating resource files, 523
Graphics Type draw area property, 576
Grid layout property, 549
Handle Events common event, 543
Height listbox property, 572
Height text property, 561
horizontal slider, using, 509
Initial Value droplist property, 570
Initial Value listbox property, 572
Initial Value text property, 562
integrating multiple interfaces, 529
Label property, 559
label widget attributes, 566
label widget properties, 566
label widgets, using, 509
Layout property, 549
listbox attributes, 572
listbox events, 573
listbox properties, 572
listbox widgets, using, 509
Maximum Value slider property, 568
menus, editing, 514
Minimize/Maximize property, 550
Minimum Value slider property, 568
Modal property, 550
modifying code, example, 502
moving widgets, 521
Multiple listbox property, 572
Name property, 540
No Release property, 559
Index Building IDL Applications



675
OnButton draw area event, 578
OnButton Press event property, 560
OnCellSelect table event, 585
OnChangeValue slider event, 569
OnColWidth table event, 585
OnDelete table event, 586
OnDelete text event, 563
OnDestroy event property, 544
OnExpose draw area event, 579
OnFocus event property, 555
OnFocus table event, 586
OnFocus text event, 563
OnInsertCh text event, 564
OnInsertChar table event, 586
OnInsertString table event, 587
OnInsertString text event, 564
OnInvalidData table event, 587
OnKillRequest event property, 555
OnMotion draw area event, 579
OnRealize event property, 544
OnSelectValue droplist event, 571
OnSelectValue listbox event, 573
OnSizeChange event property, 556
OnTextSelect table event, 587
OnTextSelect text event, 564
OnTimer event property, 544
OnTracking event property, 544
OnViewportMoved draw area event, 580
operating on widgets, 520
parent base, changing for widget, 521
pasting widgets, 521
Position slider property, 568
PostCreation event property, 545
Properties dialog, 511
radio button attributes, 558
radio button widgets, using, 509
radio buttons, creating, 557
redoing operations, 522
Renderer draw area property, 576
Resize Columns table property, 582
resizing widgets, 521

Retain draw area property, 577
Row Labels table property, 583
Row/Column Major table property, 583
Scroll draw area property, 577
Scroll property, 551
Scroll table property, 583
Scroll text property, 562
selecting widgets, 520
Sensitive property, 541
setting button events, 560
setting button properties, 557
setting text widget attributes, 561
setting text widget events, 563
slider events, 569
slider properties, 568
smooth example, 505
Space property, 551
starting, 494, 496
Suppress Value slider property, 569
System Menu property, 552
table events, 584
table widget attributes, 581
table widget properties, 581
table widgets, using, 510
test mode, 501
Text label property, 566
text widgets properties, 561
text widgets, using, 509
Title Bar property, 552
Title droplist property, 570
Title property, 552
Title slider property, 569
toolbar, 508
tools, 507
Type property, 560
undoing operations, 522
vertical slider, using, 509
Viewport Columns table property, 584
Viewport Rows table property, 584
Visible property, 553
Widget Browser, 534
Building IDL Applications Index



676
Widget Browser, using, 513
widgets, changing parent base of, 521
widgets, cutting, copying or pasting, 521
widgets, deleting, 521
widgets, moving, 521
widgets, resizing, 521
widgets, selecting, 520
Width listbox property, 573
Width text property, 562
Word Wrapping text property, 562
writing event-handling code, 502
X Offset property, 542
X Pad property, 553
X Scroll draw area property, 577
X Scroll property, 554
X Size property, 542
Y Offset property, 542
Y Pad property, 554
Y Scroll draw area property, 578
Y Scroll property, 554
Y Size property, 543

IDL object overview, 465
IDL objects, 474
IDL_TREE example routine, 143
IEEE floating point, 657
IEEE standard, 428, 430
IF statement

avoiding, 356
images

image manipulation compound widgets, 595
implicit self argument, 482
infinity, undefined result, 428
information about objects, 479
inheritance, 469

object, 466
Initial Value droplist property, 570
Initial Value listbox property, 572
Initial Value text property, 562
input/output

associated, 209
error handling, 420

explicit format, 153, 167
format codes, 172
format reversion, 171
formatted, 153
free format, 153, 162
magnetic tape, 234
portable, 204
unformatted, 152, 197

portable, 204
string variables, 197

UNIX FORTRAN unformatted data files,
213
XDR, 204

instance
object, 465

integer
constants, 44
conversions, errors in, 430
data type, 40

Interfile files
standard file format I/O routines, 240

invariant expressions, 361

J
joining strings, 74
JPEG files

standard file format I/O routines, 240

K
keyboard

focus events, 638
keywords

determining if set, 377
inheritance, 301
parameters, 296

passing, 299
setting, 296

killing widgets, 626
Index Building IDL Applications



677
L
Label button property, 559
label widgets

attributes, setting, 566
defined, 593
setting properties, 566
using, 509

Layout base property, 549
LE operator, 29
libraries

naming, 315
lifecycle

methods, 474
routines, 474

linked lists, 138
using pointers to create, 138

LINKIMAGE
VMS issues, 660

list widgets
defined, 593

listbox widgets
attributes, 572
events, 573
initial value, 572
multiple selections, allowing, 572
selection events, 573
setting height, 572
setting properties, 572
using, 509
width, 573

location of widgets, 632
logical unit numbers, 157
long integer data type, 40
loops

CONTINUE, 287
exiting (BREAK), 286
FOR, 279
REPEAT...UNTIL, 283
statements, 279
WHILE...DO, 284

lowercase strings, 67

LT operator, 30
LUNs (logical unit numbers), 157

M
Macintosh platform

breakpoints, 441, 441
magnetic tape, 234
main menu bar

breakpoint enhancements, 438
Maker Interchange Format, 452
managing the state of a widget application, 640
math errors, 427
mathematical operators, 22
matrices

multiplying (# operator), 24
maximum operator, 23
Maximum Value slider property, 568
Menu Editor, using, 514
menus, 621

editing in IDL GUIBuilder, 514
pulldown, 623
system, using, 552

message widgets
defined, 596

meta characters, 79
method overriding, 485
methods, 481

defining routines, 481
Windows 3.11, 484

invocation, 478
object, 465

MIF, 452
Minimize/Maximize base property, 550
minimum operator, 23
Minimum Value slider property, 568
MK_HTML_HELP procedure, 460
Modal base property, 550
modal dialogs, creating, 550
modulo operator, 23
Building IDL Applications Index



678
moving
files in a project, 333

Multiple listbox property, 572
multiplication

#, ## (matrix multiplication), 24
* operator, 22

N
N_ELEMENTS function, 297, 378
N_PARAMS function, 297
Name common property, 540
named

structures, 98
names

of variables, 53
NaN (not-a-number), 428
NaN values, 657
NE operator, 29

object references, 478
pointers, 132

negation operator, 22
nesting

IF statements, 273
No Release button property, 559
non-printable characters, 48
NOT operator, 26
NRIF

standard file format I/O routines, 240

O
OBJ_CLASS function, 479
OBJ_DESTROY function, 476
OBJ_ISA function, 479
OBJ_NEW function, 474
OBJ_VALID function, 480
OBJARR function, 475
object

class, 465

class structures, 467
encapsulation, 465
heap variables, 465
inheritance, 466, 469
instances, 465
lifecycle, 474
method routines, 481
persistence, 466
polymorphism, 465

object heap variables, 471
object oriented programming, 464
objects

destroying, 476
heap variables, 121, 471
references for heap variables, 121

Obtaining Traceback Information, 424
octal, 43
ON_ERROR procedure, 419
OnButton draw area event, 578
OnButton Press event property, 560
OnCellSelect table event, 585
OnChangeValue slider event, 569
OnColWidth table event, 585
OnDelete table event, 586
OnDelete text event, 563
OnDestroy property, 544
OnExpose draw area event, 579
OnFocus event property, 555
OnFocus table event, 586
OnFocus text event, 563
OnInsertCh text event, 564
OnInsertChar table event, 586
OnInsertString table event, 587
OnInsertString text event, 564
OnInvalidData table event, 587
OnKillRequest event property, 555
online help

accessing help files, 454
alternatives to, 458
context sensitive, 454
extending, 450
Index Building IDL Applications



679
paths, 457
viewers, 451

ONLINE_HELP procedure, 454
OnMotion draw area event, 579
OnRealize event property, 544
OnSelectValue droplist event, 571
OnSelectValue listbox event, 573
OnSizeChange event property, 556
OnTextSelect table event, 587
OnTextSelect text event, 564
OnTimer event property, 544
OnTracking event property, 544
OnViewportMoved draw area event, 580
opening

projects, 328
OpenVMS see VMS
operations on objects, 477
operations on pointers, 129
operators

addition, 22
AND, 26
array concatenation, 25
assignment, 22
Boolean, 26
division, 22
EQ, 29
exponentiation, 23
GE, 29
GT, 29
LE, 29
LT, 30
mathematical, 22
matrix multiplication, 24
maximum, 23
minimum, 23
modulo, 23
multiplication, 22
NE, 29
NOT, 26
OR, 26
parentheses, 21

precedence, 32
relational, 28
square brackets, 21
subtraction and negation, 22
XOR, 27

options
setting for project, 341

OR operator, 26
orientation, 3-dimensional, 595
overflow, integer, 431

P
parameters

actual, 296
copying, 297
formal, 296
passing mechanism, 296, 309

parentheses, 21
passing parameters, 309
performance

analyzing, 369
persistence, 466
PICT files

standard file format I/O routines, 240
PNG files

standard file format I/O routines, 240
pointer heap variables, 471
pointers, 121, 471

examples, 138
examples of using, 138
freeing, 137
heap variables, 121, 125
validity, 136, 136

polymorphism
objects, 465

portable unformatted I/O, 204
Position slider property, 568
positional parameters, 296
PostCreation event property, 545
Building IDL Applications Index



680
PPM files
standard file format I/O routines, 240

prc file
testing in project, 336

printf-style format code, 187
printing

dialog, 596
properties, 596
setup dialog, 596

printing dialogs, 596
PRINTNAMES example routine, 140
prj files, 326
procedures

calling
mechanism, 311

how IDL resolves, 308
profiling, 369
project

adding files, 332
closing, 328
compiling a file, 335
creating, 326
editing source files, 335
moving files, 333
opening, 328
removing files, 334
saving, 328
storing source files, 324
testing a .prc file, 336

projects
building, 347
compiling all files, 346
compiling modified files, 346
creating a .sav file, 347
exporting, 350
overview, 320, 320
running an application, 349
setting build order, 344
setting file properties, 336
setting options, 341

properties
draw area widget, 575
entering multiple strings, 513
label widget, 566
table widget, 581
text widget, 561

Properties dialog, 511
# of Rows/Columns base property, 546
Alignment base property, 547
Alignment button property, 558
Alignment label property, 566
Alignment table property, 581
Allow Moving base property, 548
Allowing Closing base property, 547
Bitmap button property, 558
Color Model draw area property, 575
Colors draw area property, 575
Column Labels table property, 581
Component Sizing common property, 540
Display Headers table property, 581
draw area events, 578
draw area widget properties, 575
droplist events, 570
droplist widgets, 570
Editable table property, 582
Editable text property, 561
entering multiple strings, 513
Floating base property, 548
Frame common property, 541
Graphics Type draw area property, 576
Grid Layout base property, 549
Handle Events common event, 543
Height listbox property, 572
Height text property, 561
Initial Value droplist property, 570
Initial Value listbox property, 572
Initial Value text property, 562
Label button property, 559
Layout base property, 549
listbox events, 573
listbox properties, 572
Index Building IDL Applications



681
Maximum Value slider property, 568
Minimize/Maximize base property, 550
Minimum Value slider property, 568
Modal base property, 550
Multiple listbox property, 572
Name common property, 540
No Release button property, 559
OnButton draw area event, 578
OnButtonPress button event, 560
OnCellSelect table event, 585
OnChangeValue slider event, 569
OnColWidth table event, 585
OnDelete table event, 586
OnDelete text event, 563
OnDestroy common event, 544
OnExpose draw area event, 579
OnFocus base event, 555
OnFocus table event, 586
OnFocus text event, 563
OnInsertCh text event, 564
OnInsertChar table event, 586
OnInsertString table event, 587
OnInsertString text event, 564
OnInvalidData table event, 587
OnKillRequest base event, 555
OnMotion draw area event, 579
OnRealize common event, 544
OnSelectValue droplist event, 571
OnSelectValue listbox event, 573
OnSizeChange base event, 556
OnTextSelect table event, 587
OnTextSelect text event, 564
OnTimer common event, 544
OnTracking common event, 544
OnViewportMoved draw area event, 580
opening, 511
Position slider property, 568
PostCreation common event, 545
Renderer draw area property, 576
Resize Columns table property, 582
Retain draw area property, 577

Row Labels table property, 583
Row/Column Major table property, 583
Scroll base property, 551
Scroll draw area property, 577
Scroll table property, 583
Scroll text property, 562
Sensitive common property, 541
setting label widget properties, 566
Space base property, 551
Suppress Value slider property, 569
System Menu base property, 552
table events, 584
table widget properties, 581
Text label property, 566
Title Bar base property, 552
Title base property, 552
Title droplist property, 570
Title slider property, 569
Type button property, 560
Viewport Columns table property, 584
Viewport Rows table property, 584
Visible base property, 553
Width listbox property, 573
Width text property, 562
Word Wrapping text property, 562
X Offset common property, 542
X Pad base property, 553
X Scroll base property, 554
X Scroll draw area property, 577
X Size common property, 542
Y Offset common property, 542
Y Pad base property, 554
Y Scroll base property, 554
Y Scroll draw area property, 578
Y Size common property, 543

Q
QuickHelp, 452
quotas, 366
quotation marks, 47
Building IDL Applications Index



682
quoted string format code
printf style, 187

R
radio button widgets

creating, 557
creating multiple, 557
laying out, 558
setting attributes, 558
setting properties, 557
using, 509

ranges
subscript, 90

READ procedure, 152
READNAMES example routine, 138
READS procedure, 223
realizing widgets, 626
recommendations

storing files in a project, 324
record-oriented files, 229
recursion, 311
REF_EXTRA keyword (keyword inheritance),
301
reference, parameters passed by, 309
relational operators, 28
relaxed structure assignment, 116
removing

files in a project, 334
Renderer draw area property, 576
Resize Columns table property, 582
restoring structures, 117
Retain draw area property, 577
Rich Text Format, 451
routines

how IDL resolves, 308
Row Labels table property, 583
Row/Column Major table property, 583
RTF, 451
running

applications from a project, 349

runtime IDL, 14

S
save/restore

heap variables, 124
VMS issues, 660

saving
projects, 328

saving and restoring heap variables, 124
scope, variable, 376
screen size, finding, 635
Scroll base property, 551
Scroll draw area property, 577
Scroll table property, 583
Scroll text property, 562
self argument (objects), 482
semicolon, 255
Sensitive common property, 541
sensitizing widgets, 627
setting

keywords, 296
options for a project, 341
properties of a file in a project, 336

setting breakpoints, 437
SGML, 452
SINKSORT example routine, 141
size

of widgets, 632
sizing widgets, 631
slider widgets, 569

defined, 593
displayed values, 569
initial position, 568
maximum value, 568
minimum value, 568
properties, 568
setting attributes, 568
setting events, 569
title, 569
using, 509
Index Building IDL Applications



683
smoothing
example, 505

sorting
SINKSORT example, 141

Space base property, 551
spaces, removing from a string, 68
SPAWN

displaying help files, 459
splitting strings, 74
square brackets, 21

See arrays, concatenation
SRF files

standard file format I/O routines, 240
standard

image file formats, 240
Standard Generalized Markup Language,
SGML, 452
statement labels, 286
statements

block of statements, 269
BREAK, 286
CASE versus SWITCH, 276
compound, 269
conditional, 272
CONTINUE, 287
FOR, 279
REPEAT...UNTIL, 283
WHILE...DO, 284

stepping
into a program, 436
over routines, 437

storing
file in a project, 324

string data type, 41
STRING function, 222
strings, 46

byte values, 65
case folding, 67
case-insensitive comparisons, 75
comparing, 75
comparing using wildcards, 76

complex comparisons, 77
concatenation, 63
extracting substrings, 73
finding first occurrence of substring, 71
finding last occurrence of substring, 72
formatting data, 64
leading and trailing blanks, 68
length, finding, 70
lowercase, 67
meta characters, 79
nonstring arguments to routines, 62
operations, 61
putting one into another, 72
regular expressions (example), 77
regular expressions (using), 79
splitting and joining, 74
substrings, 71
uppercase, 67
whitespace, 68

STRUCT_ASSIGN procedure, 116
structure of subarrays, 91
structures

advanced, 112
anonymous, 98
arrays of, 108
automatic definition, 114, 468
creating and defining, 99, 114
definition, 116
inheritance, 100
input/output, 110
introduction to, 98
named, 98
number of fields in, 112
parameter passing, 105
references, 102
relaxed definition, 116
restoring, 117
using help with, 104
zeroed, 99, 467

subscripts, 85
array valued, 92
Building IDL Applications Index



684
examples, 87
of scalars, 88
ranges, 90, 90
ranges, combined with arrays, 94
subscript arrays, 261, 262

substrings
extracting, 73
finding first occurrence, 71
finding last occurence, 72

subtraction operator, 22
Suppress Value slider property, 569
suspending execution, 437
system

files, 366
System Menu base property, 552
system variables, 55

!ERROR_STATE, 425
for errors, 425

T
table widgets, 584

alignment of text, 581
attributes, 581
cell select events, 585
column labels, 581
column width change events, 585
data invalid events, 587
data transfer to, 583
defined, 593
editing cells, 582
events, 584
focus events, 586
heading display, 581
height, 582
insert character events, 586
insert string events, 587
row labels, 583
scroll height, 584
scroll width, 584
scrolling, 583

sizing columns, 582
text delete events, 586
text selection events, 587
using, 510
width, 582

tabs, removing from a string, 68
ternary operator (?

), 30
test mode, IDL GUIBuilder, 501
testing

.prc file from a project, 336
text

selecting in IDL editor (Windows), 247
Text label property, 566
text widgets

defined, 594
delete events, 563
displaying help text, 458
focus events, 563
properties, 561
selection events, 564
setting attributes, 561
setting editable state, 561
setting height, 561
setting initial displays, 562
setting scrolling, 562
setting width, 562
setting word wrapping, 562
string insert events, 564
text insert events, 564
using, 509

TIFF files
standard file format I/O routines, 240

timer events (for widgets), 628
Title Bar base property, 552
Title base property, 552
Title droplist property, 570
Title slider property, 569
toolbars

IDL GUIBuilder, 508
trace execution, see debugging.
Index Building IDL Applications



685
traceback information, 424
transparent bitmaps, 518
TREE_EXAMPLE example routine, 143
trees, 138

binary, 143
true, definition of, 273
Type button property, 560

U
undefined variables, checking for, 379
underflow errors, 427
unformatted I/O, 152, 197
UNIX platform

breakpoints, 438
UNIX, OS-specific file I/O information, 224
unsigned data type

integer, 40
long, 40

uppercase strings, 67
user interface compound widgets, 595
user values

for widgets, 610

V
value

parameters passed by, 309
widgets, 607

Variable Watch Window, 444
variables

attributes of, 52
data type, determining, 382
determining scope, 376
disappearing, 414
displaying current, 444
names of, 53
overview, 52
system, 55
undefined, checking for, 379

VAX_CALL_EXT routine, 664
VAX_FLOAT keyword, 664
vectors

subscripting, 90
vertical slider, see slider widgets
Viewport Columns table property, 584
Viewport Rows table property, 584
virtual memory, 354, 362

minimizing, 364
minimizing with TEMPORARY, 365
running out of, 363
system parameters, 365

Visible base property, 553
Visible property, 553
VMS

Open VMS
virtual memory performance

VMS file I/O information, 227

W
whitespace, removing from strings, 68
Widget Browser, 513, 534
WIDGET_BASE function, 632
WIDGET_CONTROL procedure, 626, 627
widgets, 590

3D orientation, 595
application

errors, 604
tips, 644

attributes
slider, 568

base, 592
base focus events, 555
base, alignment, 547
base, allow moving, 548
base, allowing closing, 547
base, displaying titlebars, 552
base, floating, 548
base, grid layouts, 549
base, kill request events, 555
Building IDL Applications Index



686
base, layouts, 549
base, menus, using system, 552
base, modal, 550
base, resizing, 550
base, rows and columns, 546
base, scroll area size, 554
base, scrolling, 551
base, setting attributes, 546
base, setting events, 555
base, setting properties, 546
base, spacing of contained widgets, 551
base, spacing of widgets in, 553, 554
base, titles, 552
base, visibility, 553
bases, using, 508
Browser, 513
button, press events, 560
button, release events, 559
button, setting properties, 557
buttons, 592
buttons, adding menus, 517
buttons, displaying bitmaps, 558
buttons, labels, 559
buttons, using, 508
changing values, 626
checkboxes, using, 509
common blocks and, 640
common events, 543
compound, 595, 642, 646
compound, adding, 532
compound, example, 532
compound, handling events for, 543
controlling, 626
controlling visibility, 534
creating in IDL GUIBuilder, 508
creating with IDL GUIBuilder, 492
destroy events, 544
displaying, 534
draw, 592, 619, 619
draw area properties, 575
draw area, color model, 575

draw events, 578
draw, attributes, 575
draw, backing store, 577
draw, changing view events, 579
draw, colors used in, 575
draw, graphic type, 576
draw, mouse events, 578
draw, mouse motion events, 579
draw, render type, 576
draw, scrolling, 577
draw, scrolling area, 577, 578
draw, using, 510
draw, viewport move events, 580
droplist, 593
droplist attributes, 570
droplist events, 570
droplist properties, 570
droplist, select events, 571
droplist, title, 570
droplists, initial value, 570
droplists, using, 509
dynamic resizing, 632
enabled or disabled state, 541
events, 611
examples, 598
explicit size, 631
finding screen size, 635
frames, using, 541
geometry, 631
height, 543
hierarchies, 626
hourglass cursor, 627
interrupting the event loop, 639
killing hierarchies, 626
label, 593
label, setting properties, 566
labels, using, 509
lifecycle, 602
list, 593
listbox attributes, 572
listbox events, 573
Index Building IDL Applications



687
listbox properties, 572
listbox, height, 572
listbox, initial value, 572
listbox, multiple selections, 572
listbox, selection events, 573
listbox, using, 509
listbox, width, 573
location, 632
managing the state of applications, 640
menus, 621
message, 596
modal dialogs, 550
naming, 540
natural size, 631
portability, 644
positioning, 542
post creation events, 545
preventing layout flicker, 635
properties for IDL GUIBuilder, 511
pulldown menus, 623
radio buttons, using, 509
realize events, 544
realizing

hierarchies, 626
restarting after an error, 604
retrieving values, 626
sensitizing, 627
setting button events, 560
setting label attributes, 566
size, 632

dynamic resizing, 632
explicit, 631
natural, 631
sizing, 631

sizing, default or explicit, 540
slider, 593
slider properties, 568
slider, change value events, 569
slider, displayed values, 569
slider, initial position, 568
slider, maximum value, 568

slider, minimum value, 568
slider, setting events, 569
slider, title, 569
slider, using, 509
table, 593
table attributes, 581
table events, 584
table properties, 581
table, alignment, 581
table, cell select events, 585
table, column labels, 581
table, column width events, 585
table, data transfer to, 583
table, editing, 582
table, focus events, 586
table, heading display, 581
table, height, 582
table, insert character events, 586
table, insert string events, 587
table, invalid data events, 587
table, row labels, 583
table, scroll height, 584
table, scroll width, 584
table, scrolling, 583
table, sizing columns, 582
table, text delete events, 586
table, text selection events, 587
table, using, 510
table, width, 582
text, 594
text, character inserts, 564
text, delete event, 563
text, editable, 561
text, events, 563
text, focus events, 563
text, height, 561
text, initial display, 562
text, scrolling, 562
text, selection events, 564
text, string inserts, 564
text, using, 509
Building IDL Applications Index



688
text, width, 562
text, word wrapping, 562
timer events, 544, 628
tracking events, 544
types, 592
user values, 610, 610
values, 607

user, 610
width, 542

Width listbox property, 573
Width text property, 562
wildcards, in string searches, 76
windows

finding screen size, 635
Windows platform

breakpoints, 438
WinHelp, 451
Word Wrapping text property, 562
wrapper routines, 301
writing

a compound widget, 646

X
X Offset common property, 542
X Pad base property, 553
X Scroll base property, 554

X Scroll draw area property, 577
X Size common property, 542
X11 Bitmap, standard file format I/O routines,
240
XDICE procedure, 652
XDISPLAYFILE,displaying help files, 460
XDR, 204
XDR files, 154
XMANAGER procedure, 612, 616, 644
XOR operator, 27
XREGISTERED function, 616
xwd files

standard file format I/O routines, 240

Y
Y Offset common property, 542
Y Pad base property, 554
Y Scroll base property, 554
Y Scroll draw area property, 578
Y Size common property, 543

Z
zeroed structures, 99, 467
Index Building IDL Applications


	Online Guide
	Contents
	Overview
	What is an IDL Application?
	Can I Distribute My Application?

	About Building Applications in IDL

	Part I: Components of the IDL Language
	Expressions and Operators
	Overview
	IDL Operators
	Parentheses
	Square Brackets
	Mathematical Operators
	Assignment
	Addition
	Subtraction and Negation
	Multiplication
	Division
	Exponentiation
	Modulo

	Minimum and Maximum Operators
	The Minimum Operator
	The Maximum Operator

	Matrix Multiplication
	The # Operator
	The ## Operator

	Array Concatenation
	Boolean Operators
	AND
	NOT
	OR
	XOR

	Relational Operators
	EQ
	NE
	GE
	GT
	LE
	LT
	Using Relational Operators with Arrays
	Using Relational Operators with Infinity and NaN Values

	Conditional Expression

	Operator Precedence
	Type and Structure of Expressions
	Expression Type
	Expression Structure


	Constants and Variables
	Data Types
	Basic Data Types
	Precision of Floating-Point Numbers

	Complex Data Types
	Determining the Data Type of a Variable or Array

	Constants
	Integer Constants
	Floating-Point and Double-Precision Constants
	Complex Constants
	String Constants
	Representing Non-Printable Characters

	Type Conversion Functions
	Take Care When Converting Types
	Converting Strings
	Dynamic Type Conversion
	Examples of Type Conversion

	Variables
	Attributes of Variables
	Structure
	Type

	Variable Names

	System Variables
	Common Blocks
	Common Block Definition Statements
	Example

	Common Block Reference Statements
	Example



	Strings
	Overview
	A Note About the Examples

	String Operations
	Concatenation
	Formatting Data
	Case Folding
	White Space Removal
	Length
	Substrings
	Splitting and Joining Strings
	Comparing Strings

	Non-string and Non-scalar Arguments
	String Concatenation
	Using STRING to Format Data
	Reading Data from Strings

	Byte Arguments and Strings
	Case Folding
	Whitespace
	Removing All Whitespace
	Removing Leading or Trailing Blanks
	Removing All Types of Whitespace

	Finding the Length of a String
	Substrings
	Searching for a Substring
	Searching For the Last Occurrence of a Substring
	Inserting the Contents of One String into Another
	Extracting Substrings

	Splitting and Joining Strings
	Comparing Strings
	Case-Insensitive Comparisons of the First N Characters
	String Comparisons Using Wildcards
	Complex Comparisons Using Regular Expressions

	Learning About Regular Expressions
	Meta Characters
	Subexpressions
	Bracket Expressions


	Arrays
	Overview
	Array Subscripts
	Array Subscript Syntax: [ ] vs. ( )
	Subscript Examples
	“Extra” Dimensions
	Subscripting Scalars

	Subscript Ranges
	Structure of Subarrays
	Using Arrays as Subscripts
	Example

	Combining Array Subscripts with Others
	Subscript Ranges
	Other Subscript Arrays
	Scalars

	Storing Elements with Array Subscripts
	Examples


	Structures
	Overview
	Named Structures
	Anonymous Structures

	Creating and Defining Structures
	Structure Inheritance
	Example of Creating a Structure

	Structure References
	Subscripted Structure References
	Examples of Structure References

	Using HELP with Structures
	Parameter Passing with Structures
	Storing Into Array Fields

	Arrays of Structures
	Creating an Array of Structures
	Examples of Arrays of Structures

	Structure Input/Output
	Formatted Input/Output with Structures
	Unformatted Input/Output with Structures
	Strings
	String Length Issues

	Advanced Structure Usage
	Number of Structure Tags
	Names of Structure Tags
	Example

	Automatic Structure Definition
	Relaxed Structure Assignment
	Using Relaxed Structure Assignment


	Pointers
	Overview
	Running the Example Code

	Heap Variables
	Creating Heap Variables
	Saving and Restoring Heap Variables
	Pointer Heap Variables
	IDL Pointers
	Null Pointers
	The PTR_NEW Function
	The PTRARR Function

	Operations on Pointers
	Assignment
	Dereference
	Dereferencing Pointer Arrays
	Dereferencing Pointers to Pointers
	Dereferencing Pointers within Structures
	Dereferencing the Null Pointer

	Equality and Inequality

	Dangling References
	Heap Variable Leakage
	Pointer Validity
	Freeing Pointers
	Pointer Examples
	Creating a Linked List
	Creating the List
	Printing the Linked List
	A Simple Sorting Routine for the Linked List

	Example Files—Using Pointers to Create Binary Trees


	Files and Input/Output
	Overview
	File I/O in IDL
	Simple Examples
	Routines for Input/Output

	Unformatted Input/Output
	Advantages of Unformatted I/O
	Disadvantages of Unformatted I/O

	Formatted Input/Output
	Advantages of Formatted I/O
	Disadvantages of Formatted I/O
	Free Format I/O
	Advantages of Free Format I/O
	Disadvantages of Free Format I/O

	Explicit Format I/O
	Advantages of Explicit I/O
	Disadvantages of Explicit I/O


	Opening Files
	Platform-Specific Keywords to the OPEN Procedure

	Closing Files
	Logical Unit Numbers (LUNs)
	The Standard Input, Output, and Error LUNs
	UNIX
	VMS
	Windows and Macintosh
	File Unit 0
	File Unit -1
	File Unit -2

	File Units 1–99
	File Units 100�–128

	Reading and Writing Very Large Files
	Limitations of Large File Support

	Using Free Format Input/Output
	Structures and Free Format Input/Output
	Free Format Input
	Free Format Output
	Example: Free Format Input/Output

	Using Explicitly Formatted Input/Output
	Record Terminators
	Format Codes
	Field Separators
	Rules for Explicitly Formatted Input/Output
	Format Reversion

	Format Codes
	“A” Format Code
	“:” Format Code
	“$” Format Code
	“F,” “D,” “E,” and “G” Format Codes
	“I,” “O,” and “Z” Format Codes
	“Q” Format Code
	Quoted String and “H” Format Codes
	“T” Format Code
	“TL” Format Code
	“TR” and “X” Format Codes
	“C()” Format Code
	Calendar Format Subcodes
	“CMOA” subcodes
	“CMOI” subcode
	“CDI” subcode
	“CYI” subcode
	“CHI” subcodes
	“CMI” subcode
	“CSI” subcode
	“CSF” subcode
	“CDWA” subcodes
	“CAPA” subcodes

	Standard Format Codes Allowed within a Calendar Specification
	Example:
	Example:
	Example:


	C printf-Style Quoted String Format Code
	Supported “%” Formats
	Supported “\” Character Escapes
	Differences Between C printf() and IDL printf-Style Formats

	Example: Reading Tables of Formatted Data
	Example: Reading Records that Contain Multiple Array Elements
	FORTRAN Write:
	IDL Read:
	FORTRAN Write:
	IDL Read:
	FORTRAN Write:
	IDL Read:


	Using Unformatted Input/Output
	READU
	WRITEU
	ASSOC
	Unformatted Input/Output of String Variables
	Input
	Output

	Example: Reading C-Generated Unformatted Data with IDL
	Example: Reading IDL-Generated Unformatted Data with C
	Example: Reading a Sun Rasterfile from IDL

	Portable Unformatted Input/Output
	XDR Considerations
	IDL XDR Conventions for Programmers
	Example: Reading C-Generated XDR Data with IDL

	Associated Input/Output
	Example of Using Associated Input/Output
	Reading Data from Associated Files
	Subscripting Associated File Variables on Input
	Writing Data
	Files with Multiple Structures
	Offset Parameter
	Efficiency
	Unformatted Data from UNIX FORTRAN Programs

	File Manipulation Operations
	Locating Files
	IDL File Handling Routines
	Changing File Access Permissions
	Deleting Files and Empty Directories
	Expanding Files and Directory Paths
	Creating Directories
	Testing for a File’s Existence
	Searching for a Specific File
	Getting Help and Information
	The FSTAT Function
	An Example Using FSTAT

	Flushing File Units
	Positioning File Pointers
	Testing for End-Of-File
	GET_KBRD
	Example—Using GET_KBRD

	Using the STRING Function to Format Data
	Example—Using STRING with Explicit Formatting

	Reading Data from a String Variable

	UNIX-Specific Information
	Reading FORTRAN-Generated Unformatted Data with IDL
	Reading data from a FORTRAN file
	Writing data to a FORTRAN file


	VMS-Specific Information
	Organization
	Access
	Record Format
	Record Attributes
	File Attributes
	How IDL Handles Records
	Reading FORTRAN-Generated Unformatted Data with IDL
	Indexed Files
	Creating Indexed Files
	Using Indexed Files

	Magnetic Tape
	Magnetic Tape Examples
	References

	Windows-Specific Information
	Macintosh-Specific Information
	Scientific Data Formats
	Support for Standard Image File Formats


	Part II: Basics of IDL Programming
	Introduction to IDL Programming
	What is an IDL Program?
	Main-Level Programs
	Batch Files
	Program Files

	Using the IDL Editor
	Text Selection Modes (Windows Only)
	Chromacoded Editor (Windows Only)
	Turning Chromacoding Off

	Functions/Procedures Menu
	Using External Editors (Motif)

	Creating a Simple Program
	Compiling and Running Your Program
	Compilation Errors

	Commenting Your IDL Code

	Assignment
	Overview of the Assignment Statement
	Assigning a Value to a Variable
	Examples

	Assigning Scalars to Array Elements
	Using Array Subscripts

	Assigning Arrays to Array Elements
	Examples
	Using Array Subscripts

	Avoid Using Range Subscripts
	Examples

	Using Associated File Variables

	Program Control
	Overview
	Compound Statements
	BEGIN...END

	Conditional Statements
	IF...THEN...ELSE
	Definition of True and False
	Using Statement Blocks with the IF Statement
	Nesting IF Statements

	CASE
	Example

	SWITCH
	CASE Versus SWITCH

	Loop Statements
	FOR...DO
	FOR Statement with an Increment of One
	Examples

	FOR Statement with Variable Increment
	Examples

	Sequence of the FOR Statement

	REPEAT...UNTIL
	Examples

	WHILE...DO
	Examples


	Jump Statements
	Statement Labels
	BREAK
	Example

	CONTINUE
	Example

	GOTO
	Example



	Procedures and Functions
	Overview
	Defining a Procedure
	Calling a Procedure
	Example

	Defining a Function
	Example
	Automatic Execution
	Forward Function Definition

	Parameters
	Correspondence of Formal and Actual Parameters
	Positional Parameters
	Keyword Parameters

	Copying Parameters
	Number of Parameters
	Example

	Using Keyword Parameters
	Keyword Inheritance
	_EXTRA: Passing Keyword Parameters by Value
	_REF_EXTRA: Passing Keyword Parameters by Reference
	Accepting Extra Keyword Parameters
	Selective Keyword Redirection

	Choosing a Keyword Inheritance Mechanism
	Example: Keywords Passed by Value
	Example: Keywords Passed by Reference

	Entering Procedure Definitions
	Note Regarding Functions

	How IDL Resolves Routines
	Parameter Passing Mechanism
	Calling Mechanism
	Recursion
	Example

	Setting Compilation Options
	Advice for Library Authors


	Part III: Creating Applications in IDL
	Creating IDL Projects
	Overview
	Access to all Files in Your Application
	Working with an IDL Project
	Compiling and Running Your Application
	Build Your Application
	Exporting Your Applications
	The IDL Project Interface
	Example of a Project

	Where to Store the Files for a Project
	Creating a Project
	Opening, Closing, and Saving Projects
	Opening a Project
	Saving a Project
	Closing a Project

	Modifying Project Groups
	Modifying Project Groups on Windows and UNIX
	Modifying Project Groups on Macintosh

	Adding, Moving, and Removing Files
	Adding Files
	Moving Files
	Removing Files
	On Windows and Motif
	On Macintosh


	Working with Files in a Project
	Editing a Source File
	Compiling a File
	Testing a File
	Setting the Properties of a File
	Modifying Properties of Multiple Files

	Setting the Options for a Project
	Selecting the Build Order
	Compiling an Application from a Project
	To Compile All Files in Your Project
	To Compile Only Modified Files in Your Project

	Building a Project
	About IDL GUIBuilder Files

	Running an Application from a Project
	Exporting a Project
	Exporting Your Project’s Source Files
	Exporting Your Project to a Save File


	Writing Efficient IDL Programs
	Overview
	Expression Evaluation Order
	Avoid IF Statements
	Example—Summing Elements
	Example—Using Array Operators and the WHERE Function

	Use Vector and Array Operations
	Use System Functions and Procedures
	Example

	Use Constants of the Correct Type
	Eliminate Invariant Expressions
	Virtual Memory
	Access Large Arrays by Memory Order
	Example

	Running Out of Virtual Memory
	Minimizing Virtual Memory
	The TEMPORARY Function
	Virtual Memory System Parameters
	SYSGEN Parameters
	System Files
	Quotas


	IDL Implementation
	The IDL Code Profiler
	The Profile Dialog
	User Modules
	All User Modules

	System Modules
	All System Modules

	Buttons

	The Profile Report Dialog
	Fields in the Profiler Report Dialog
	Modules
	Typ
	Count
	Only(sec)
	Only Avg
	+Children(sec)
	+Child Avg

	Buttons

	Using the IDL Code Profiler
	Profiling with Command Line Modules



	Solutions to Common IDL Tasks
	Determining Variable Scope
	Determining if a Keyword is Set
	Determining the Number of Array Elements in an Expression or Variable
	Determining if a Variable is Defined
	Supplying Values for Missing Keywords
	Supplying Values for Missing Arguments
	Determining the Size/Type of an Array
	Examples
	Example 1
	Example 2


	Determining if a Variable Contains a Scalar or Array Value
	Calling Functions/Procedures Indirectly
	Example

	Executing Dynamically-Created IDL Code

	Building Cross- Platform Applications
	Overview
	Which Operating System is Running?
	File and Path Specifications
	Choosing Files at Runtime
	Selecting Files Programmatically

	Environment Variables
	Files and I/O
	Byte Order Issues
	Logical Unit Numbers
	Macintosh File Pointer
	Macintosh File Types and Creators
	Naming of IDL .pro Files

	Math Exceptions
	Operating System Access
	Display Characteristics and Palettes
	Finding Screen Size
	Number of Colors Available

	Fonts
	Printing
	SAVE and RESTORE
	Widgets
	Dialog Routines
	Base Widgets
	Positioning Widgets within a Base Widget
	Fonts used in Widget Applications
	Application Menu Bars
	Motif Resources
	WIDGET_STUB
	Widget Event Inconsistencies

	Using External Code
	IDL DataMiner Issues

	Controlling Errors
	Overview
	Default Error-Handling Mechanism
	Disappearing Variables
	Controlling Errors Using CATCH
	Interaction of CATCH, ON_ERROR, and ON_IOERROR
	Canceling an Error Handler
	Generating an Exception
	Example Using CATCH

	Controlling Errors Using ON_ERROR
	Controlling Input/Output Errors
	Error Signaling
	Obtaining Traceback Information
	Error Handling
	!ERROR_STATE
	Using !ERROR_STATE

	Math Errors
	A Note on Floating-Point Underflow Errors
	Accumulated Math Error Status
	!EXCEPT=0
	!EXCEPT=1
	!EXCEPT=2

	Special Floating-Point Values
	The FINITE Function
	Integer Conversions


	Debugging an IDL Program
	Overview
	Debugging Commands
	A Simple Example
	Step Through the Program
	Fix the Program
	Breakpoints
	Working with Breakpoints on Windows/Motif Platforms
	The Breakpoint Toolbar Buttons
	The Windows Edit Breakpoints Dialog

	Working with Breakpoints on the Macintosh Platform
	The Macintosh Edit Breakpoints Dialog


	The Variable Watch Window
	Customizing Variable Watch Window Layout
	The Variable Watch Interface Description
	The Variable Watch Window and Objects

	Using the Variable Watch Window


	Extending the IDL Online Help System
	Overview
	Online Help Viewers Included with IDL
	Microsoft Windows
	Macintosh
	UNIX and VMS

	Accessing Online Help from IDL
	Accessing a Help File with ONLINE_HELP
	Creating Context Sensitive Help Files
	Accessing a Context Sensitive Online Help File
	Creating a Simple Help Button
	Paths for Help Files

	Alternatives to Traditional Help Systems
	Creating a Text Widget to Display Help Text
	Displaying HTML or Text Help Files Using SPAWN
	Displaying a Text Help File Using XDISPLAYFILE



	Part IV: Using IDL Objects
	Object Basics
	Object-Oriented Programming
	IDL Object Overview
	Classes and Instances
	Encapsulation
	Methods
	Polymorphism
	Inheritance
	Persistence

	Class Structures
	Automatic Class Structure Definition

	Inheritance
	Object Heap Variables
	Dangling References
	Heap Variable “Leakage”

	Null Objects
	The Object Lifecycle
	Creation and Initialization
	The INIT Method
	The OBJ_NEW Function
	The OBJARR Function

	Destruction

	Operations on Objects
	Assignment
	Method Invocation
	Equality and Inequality

	Obtaining Information about Objects
	OBJ_CLASS
	OBJ_ISA
	OBJ_VALID

	Method Routines
	Defining Method Routines
	The Implicit Self Argument
	Calling Method Routines
	Searching for Method Routines

	Method Overriding
	Specifying Class Names in Method Calls

	Object Examples


	Part V: Creating GUIs
	Using the IDL�GUIBuilder
	Overview
	Starting the IDL GUIBuilder
	Opening Existing Interface Definitions

	Creating an Example Application
	Defining Menus for the Top-level Base
	Creating a Draw Widget
	Running the Application in Test Mode
	Generating the IDL Code
	Handling the Open File Event
	Handling the Exit Event
	Handling the Load Color Table Event
	Handling the Smooth Event
	Compiling and Running the Example Application

	IDL GUIBuilder Tools
	Using the IDL GUIBuilder Toolbar
	Creating Widgets

	Using the Properties Dialog
	Opening the Properties dialog
	Entering Multiple Strings for a Property

	Using the Widget Browser
	Using the Menu Editor
	Adding Menus to Top-Level Bases
	Adding Menus to Buttons

	Using the Bitmap Editor
	Placing a Color Bitmap on a Button
	Using the Bitmap Editor Tools


	Widget Operations
	Selecting Widgets
	Moving and Resizing Widgets
	Cutting, Copying, and Pasting Widgets
	Deleting Widgets
	Undoing and Redoing Operations

	Generating Files
	Generating Resource Files
	Generating IDL Code
	Notes on Generating Code a Second Time


	IDL GUIBuilder Examples
	Understanding IDL GUIBuilder Event Handling Code
	Writing Event Callback Routines
	Handling Initialization Arguments
	Integrating Multiple Interfaces
	Creating the Main Window
	Creating the Modal Dialog
	Running the Example Application

	Adding Compound Widgets
	Adding a Compound Widget to an Interface
	Running the Example

	Controlling Widget Display
	Creating the Interface
	Generating and Modifying the Code
	Running the Application


	Widget Properties
	Common Widget Properties
	Common Attributes
	Name
	Component Sizing
	Frame
	Sensitive
	X Offset
	X Size
	Y Offset
	Y Size

	Common Events
	Handle Event
	OnDestroy
	OnRealize
	OnTimer
	OnTracking
	PostCreation


	Base Widget Properties
	Base Widget Attributes
	# of Rows/Columns
	Alignment
	Allow Closing
	Allow Moving
	Floating
	Grid Layout
	Layout
	Minimize/Maximize
	Modal
	Scroll
	Space
	System Menu
	Title
	Title Bar
	Visible
	X Pad
	X Scroll
	Y Pad
	Y Scroll

	Base Widget Events
	OnFocus
	OnKillRequest
	OnSizeChange


	Button Widget Properties
	Creating Multiple Radio Buttons or Checkboxes
	Button, Radio Button, and Checkbox Widget Attributes
	Alignment
	Bitmap
	Label
	No Release
	Type

	Button, Radio Button, and Checkbox Widget Events
	OnButtonPress


	Text Widget Properties
	Text Widget Attributes
	Editable
	Height
	Initial Value
	Scroll
	Width
	Word Wrapping

	Text Widget Events
	OnDelete
	OnFocus
	OnInsertCh
	OnInsertString
	OnTextSelect


	Label Widget Properties
	Label Widget Attributes
	Alignment
	Text

	Label Widget Events

	Slider Widget Properties
	Horizontal and Vertical Slider Widget Attributes
	Maximum Value
	Minimum Value
	Position
	Suppress Value
	Title

	Horizontal and Vertical Slider Widget Events
	OnChangeValue


	Droplist Widget Properties
	Droplist Widget Attributes
	Initial Value
	Title

	Droplist Widget Events
	OnSelectValue


	Listbox Widget Properties
	Listbox Widget Attributes
	Height
	Initial Value
	Multiple
	Width

	Listbox Widget Events
	OnSelectValue


	Draw Widget Properties
	Draw Area Widget Attributes
	Color Model
	Colors
	Graphics Type
	Renderer
	Retain
	Scroll
	X Scroll
	Y Scroll

	Draw Area Widget Events
	OnButton
	OnExpose
	OnMotion
	OnViewportMoved


	Table Widget Properties
	Table Widget Attributes
	Alignment
	Column Labels
	Display Headers
	Editable
	Number of Columns
	Number of Rows
	Resize Columns
	Row/Column Major
	Row Labels
	Scroll
	Viewport Columns
	Viewport Rows

	Table Widget Events
	OnCellSelect
	OnColWidth
	OnDelete
	OnFocus
	OnInsertChar
	OnInsertString
	OnInvalidData
	OnTextSelect



	Widgets
	Overview
	Running the Example Code

	Widget Types
	Widget Primitives
	Base
	Button
	Draw
	Droplist
	Label
	List
	Slider
	Table
	Text

	Compound Widgets
	Animation
	Color Manipulation
	Data Entry and Display
	Image Manipulation
	Orientation
	User Interface

	Dialogs
	File and Directory Selection
	Message
	Printing


	Manipulating Widgets
	Examples of Widget Programming
	The Widget Application Model
	Iconization
	Layering
	Destruction
	Floating bases
	Modal bases
	Menubars

	Creating Widget Applications
	Construct the Widget Hierarchy
	Provide an Event-Handling Routine
	Realize the Widgets
	Register the Program with the XMANAGER
	Destroy the Widgets
	Handling Widget Application Errors

	Widget Example 1
	Widget Values
	Button
	Draw
	Label
	List or Droplist
	Slider
	Table
	Text
	Widget Values of Compound Widgets
	CW_ARCBALL
	CW_BGROUP
	CW_CLR_INDEX
	CW_COLORSEL
	CW_FIELD
	CW_FORM
	CW_FSLIDER
	CW_ZOOM


	Widget User Values
	User Values Simplify Event Handling
	User Values Can Simulate Global Variables

	Widget Events
	What are Widget Events?
	Structure of Widget Events
	Processing Widget Events
	Calling the WIDGET_EVENT Function
	Managing Events with XMANAGER
	A Note About Blocking in XMANAGER
	JUST_REG vs. NO_BLOCK
	Blocking vs. Non-blocking Applications
	Features Reserved to XMANAGER
	The XREGISTERED Function


	Widget Example 2
	Using Draw Widgets
	Using Direct Graphics in Draw Widgets
	Using Object Graphics in Draw Widgets
	Scrolling Draw Widgets

	Creating Menus
	Button Groups
	Exclusive or Nonexclusive Buttons

	Lists
	Pulldown Menus
	Menus on Top-Level Bases

	Controlling Widgets
	Realizing Widget Hierarchies
	Killing Widget Hierarchies
	Retrieving or Changing Widget Values
	Sensitizing Widgets
	Indicating Time-Consuming Operations
	Using Timer Events

	Widget Example 3
	Widget Sizing
	Widget Geometry Terms and Concepts
	How Widget Geometry is Determined
	Dynamic Resizing
	Explicitly Specifying the Size and Location of Widgets
	Sizing Keywords
	Controlling Widget Size after Creation
	Units of Measurement
	Finding the Size of the Screen

	Preventing Layout Flicker

	Event Processing And Callbacks
	Identifying Widget Type from an Event
	Keyboard Focus Events
	Interrupting the Event Loop

	Managing Widget Application State
	Compound Widgets
	Writing Compound Widgets

	Tips on Creating Widget Applications
	Portability Issues

	Compound Widget Example
	Using CW_DICE in a Widget Program



	VMS Floating-Point Arithmetic in IDL
	Overview
	VAX Floating-Point Format Background
	Transition Issues
	Input/Output
	CALL_EXTERNAL
	LINKIMAGE
	SAVE and RESTORE

	A Warning About Floating-Point Conversions in IDL
	A Strategy for Converting VMS Programs
	Step 1: Ensure the Stability of Existing Operations
	Step 2: Use Compatibility Mode To Make The Initial Port
	Step 3: Full Port

	Using CALL_EXTERNAL
	A Note on the VMS G Float Format

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z


